chatglm-6b-int4-qe / configuration_chatglm.py
zxdu20's picture
Slim embedding
c808a4e
raw
history blame
4.38 kB
""" ChatGLM model configuration """
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
class ChatGLMConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`~ChatGLMModel`].
It is used to instantiate an ChatGLM model according to the specified arguments, defining the model
architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of
the ChatGLM-6B [THUDM/ChatGLM-6B](https://huggingface.co/THUDM/chatglm-6b) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used
to control the model outputs. Read the documentation from [`PretrainedConfig`]
for more information.
Args:
vocab_size (`int`, *optional*, defaults to 150528):
Vocabulary size of the ChatGLM-6B model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`~ChatGLMModel`] or
[`~TFChatGLMModel`].
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 28):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.
inner_hidden_size (`int`, *optional*, defaults to 16384):
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
max_sequence_length (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with.
Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
layernorm_epsilon (`float`, *optional*, defaults to 1e-5):
The epsilon used by the layer normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether the model should return the last key/values attentions (not used by all models).
Example:
```python
>>> from configuration_chatglm import ChatGLMConfig
>>> from modeling_chatglm import ChatGLMModel
>>> # Initializing a ChatGLM-6B THUDM/ChatGLM-6B style configuration
>>> configuration = ChatGLMConfig()
>>> # Initializing a model from the THUDM/ChatGLM-6B style configuration
>>> model = ChatGLMModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```
"""
model_type = "chatglm"
def __init__(
self,
vocab_size=150528,
hidden_size=4096,
num_layers=28,
num_attention_heads=32,
layernorm_epsilon=1e-5,
use_cache=False,
bos_token_id=150004,
eos_token_id=150005,
mask_token_id=150000,
gmask_token_id=150001,
pad_token_id=0,
max_sequence_length=2048,
inner_hidden_size=16384,
position_encoding_2d=True,
quantization_bit=0,
quantization_embeddings=False,
pre_seq_len=None,
prefix_projection=False,
**kwargs
):
self.num_layers = num_layers
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_attention_heads = num_attention_heads
self.max_sequence_length = max_sequence_length
self.layernorm_epsilon = layernorm_epsilon
self.inner_hidden_size = inner_hidden_size
self.use_cache = use_cache
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.mask_token_id = mask_token_id
self.gmask_token_id = gmask_token_id
self.position_encoding_2d = position_encoding_2d
self.quantization_bit = quantization_bit
self.quantization_embeddings = quantization_embeddings
self.pre_seq_len = pre_seq_len
self.prefix_projection = prefix_projection
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
**kwargs
)