Harsh Trivedi
commited on
Commit
·
57280e5
1
Parent(s):
836c794
update.
Browse files- README.md +54 -0
- added_tokens.json +1 -0
- config.json +58 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- spiece.model +3 -0
- tokenizer_config.json +1 -0
README.md
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- question-answering, multi-step-reasoning, multi-hop-reasoning
|
4 |
+
thumbnail: https://raw.githubusercontent.com/StonyBrookNLP/teabreac/main/teabreac_icon.png
|
5 |
+
license: cc-by-4.0
|
6 |
+
---
|
7 |
+
|
8 |
+
# What's this?
|
9 |
+
|
10 |
+
This is one of the models reported in the paper: ["Teaching Broad Reasoning Skills for Multi-Step QA by Generating Hard Contexts".](https://arxiv.org/abs/2205.12496).
|
11 |
+
|
12 |
+
This paper proposes a procedure to synthetically generate a QA dataset, TeaBReaC, for pretraining language models for robust multi-step reasoning. Pretraining plain LMs like Bart, T5 and numerate LMs like NT5, PReasM, POET on TeaBReaC leads to improvemed downstream performance on several multi-step QA datasets. Please checkout out the paper for the details.
|
13 |
+
|
14 |
+
We release the following models:
|
15 |
+
|
16 |
+
- **A:** Base Models finetuned on target datasets: `{base_model}-{target_dataset}`
|
17 |
+
- **B:** Base models pretrained on TeaBReaC: `teabreac-{base_model}`
|
18 |
+
- **C:** Base models pretrained on TeaBReaC and then finetuned on target datasets: `teabreac-{base_model}-{target_dataset}`
|
19 |
+
|
20 |
+
The `base_model` above can be from: `bart-large`, `t5-large`, `t5-3b`, `nt5-small`, `preasm-large`.
|
21 |
+
The `target_dataset` above can be from: `drop`, `tatqa`, `iirc-gold`, `iirc-retrieved`, `numglue`.
|
22 |
+
|
23 |
+
The **A** models are only released for completeness / reproducibility. In your end application you probably just want to use either **B** or **C**.
|
24 |
+
|
25 |
+
# How to use it?
|
26 |
+
|
27 |
+
Please checkout the details in our [github repository](https://github.com/stonybrooknlp/teabreac), but in a nutshell:
|
28 |
+
|
29 |
+
```python
|
30 |
+
# NOTE: This model is only pretrained on TeaBReaC, and not on any real QA dataset.
|
31 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
32 |
+
from digit_tokenization import enable_digit_tokenization # digit_tokenization.py from https://github.com/stonybrooknlp/teabreac
|
33 |
+
|
34 |
+
model_name = "teabreac-preasm-large"
|
35 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False) # Fast doesn't work with digit tokenization
|
36 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
37 |
+
enable_digit_tokenization(tokenizer)
|
38 |
+
input_texts = [
|
39 |
+
"Who scored the first touchdown of the game?\n" +
|
40 |
+
"... Oakland would get the early lead in the first quarter as quarterback JaMarcus Russell completed a 20-yard touchdown pass to rookie wide receiver Chaz Schilens..."
|
41 |
+
# Note: some models have slightly different qn/ctxt format. See the github repo.
|
42 |
+
]
|
43 |
+
input_ids = tokenizer(
|
44 |
+
input_texts, return_tensors="pt",
|
45 |
+
truncation=True, max_length=800,
|
46 |
+
add_special_tokens=True, padding=True,
|
47 |
+
)
|
48 |
+
generated_ids = model.generate(input_ids, min_length=1, max_length=50)
|
49 |
+
generated_predictions = tokenizer.batch_decode(generated_ids, skip_special_tokens=False)
|
50 |
+
generated_predictions = [
|
51 |
+
tokenizer.fix_decoded_text(generated_prediction) for generated_prediction in generated_predictions
|
52 |
+
]
|
53 |
+
# => ["Chaz Schilens"]
|
54 |
+
```
|
added_tokens.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"select": 32100, "boolean": 32101, "are_items_same": 32102, "are_items_different": 32103, "arg_minimum_number": 32104, "arg_maximum_number": 32105, "minimum_number": 32106, "maximum_number": 32107, "arithmetic_mean_single": 32108, "arithmetic_sum_single": 32109, "arithmetic_sum_multiple": 32110, "arithmetic_division": 32111, "arithmetic_subtraction": 32112, "arithmetic_multiplication": 32113, "compare_numbers": 32114, "arg_minimum_date": 32115, "arg_maximum_date": 32116, "minimum_date": 32117, "maximum_date": 32118, "date_subtraction": 32119, "compare_dates": 32120, "list_subtraction": 32121, "filter_a_where_b_is_max_date": 32122, "filter_a_where_b_is_min_date": 32123, "filter_a_where_b_is_compared_to_date": 32124, "filter_a_where_b_is_max": 32125, "filter_a_where_b_is_min": 32126, "filter_a_where_b_is_given_value": 32127, "filter_a_where_b_is_compared_to": 32128, "logical_or": 32129, "logical_and": 32130, "arg_bool": 32131, "arg_intersection": 32132, "intersection": 32133, "grouped_count": 32134, "grouped_mean": 32135, "grouped_sum": 32136, "kth_highest": 32137, "kth_lowest": 32138, "null": 32139, "[COLD]": 32140, "[ROWD]": 32141, "[DFB]": 32142, "[DFE]": 32143, "[DFD]": 32144, "[MDFD]": 32145, "<ss>": 32146, "[CND]": 32147, "[SOMD]": 32148, "[SIND]": 32149, "[CHPD]": 32150, "[CTANS]": 32151, "[CTOUINTA]": 32152, "[CTOUINSINA]": 32153, "[CTCNINTA]": 32154, "[CTCNINSINA]": 32155, "[SNS]": 32156, "[SNE]": 32157, "[SCD]": 32158, "[SCBP]": 32159, "[SCBN]": 32160, "[SCMP]": 32161, "[SCMN]": 32162, "[DAY]": 32163, "[MONTH]": 32164, "[YEAR]": 32165}
|
config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "t5-large",
|
3 |
+
"architectures": [
|
4 |
+
"T5ForConditionalGeneration"
|
5 |
+
],
|
6 |
+
"d_ff": 4096,
|
7 |
+
"d_kv": 64,
|
8 |
+
"d_model": 1024,
|
9 |
+
"decoder_start_token_id": 0,
|
10 |
+
"dropout_rate": 0.1,
|
11 |
+
"eos_token_id": 1,
|
12 |
+
"feed_forward_proj": "relu",
|
13 |
+
"gradient_checkpointing": false,
|
14 |
+
"initializer_factor": 1.0,
|
15 |
+
"is_encoder_decoder": true,
|
16 |
+
"layer_norm_epsilon": 1e-06,
|
17 |
+
"model_type": "t5",
|
18 |
+
"n_positions": 512,
|
19 |
+
"num_decoder_layers": 24,
|
20 |
+
"num_heads": 16,
|
21 |
+
"num_layers": 24,
|
22 |
+
"output_past": true,
|
23 |
+
"pad_token_id": 0,
|
24 |
+
"relative_attention_num_buckets": 32,
|
25 |
+
"task_specific_params": {
|
26 |
+
"summarization": {
|
27 |
+
"early_stopping": true,
|
28 |
+
"length_penalty": 2.0,
|
29 |
+
"max_length": 200,
|
30 |
+
"min_length": 30,
|
31 |
+
"no_repeat_ngram_size": 3,
|
32 |
+
"num_beams": 4,
|
33 |
+
"prefix": "summarize: "
|
34 |
+
},
|
35 |
+
"translation_en_to_de": {
|
36 |
+
"early_stopping": true,
|
37 |
+
"max_length": 300,
|
38 |
+
"num_beams": 4,
|
39 |
+
"prefix": "translate English to German: "
|
40 |
+
},
|
41 |
+
"translation_en_to_fr": {
|
42 |
+
"early_stopping": true,
|
43 |
+
"max_length": 300,
|
44 |
+
"num_beams": 4,
|
45 |
+
"prefix": "translate English to French: "
|
46 |
+
},
|
47 |
+
"translation_en_to_ro": {
|
48 |
+
"early_stopping": true,
|
49 |
+
"max_length": 300,
|
50 |
+
"num_beams": 4,
|
51 |
+
"prefix": "translate English to Romanian: "
|
52 |
+
}
|
53 |
+
},
|
54 |
+
"torch_dtype": "float32",
|
55 |
+
"transformers_version": "4.10.0",
|
56 |
+
"use_cache": true,
|
57 |
+
"vocab_size": 32166
|
58 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb4b5239fe588775d514ade4bd9bc897cab2b02dba52767be9357655089cb49b
|
3 |
+
size 2951053191
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>", "additional_special_tokens": ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"]}
|
spiece.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d60acb128cf7b7f2536e8f38a5b18a05535c9e14c7a355904270e15b0945ea86
|
3 |
+
size 791656
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>", "extra_ids": 100, "additional_special_tokens": ["<extra_id_0>", "<extra_id_1>", "<extra_id_2>", "<extra_id_3>", "<extra_id_4>", "<extra_id_5>", "<extra_id_6>", "<extra_id_7>", "<extra_id_8>", "<extra_id_9>", "<extra_id_10>", "<extra_id_11>", "<extra_id_12>", "<extra_id_13>", "<extra_id_14>", "<extra_id_15>", "<extra_id_16>", "<extra_id_17>", "<extra_id_18>", "<extra_id_19>", "<extra_id_20>", "<extra_id_21>", "<extra_id_22>", "<extra_id_23>", "<extra_id_24>", "<extra_id_25>", "<extra_id_26>", "<extra_id_27>", "<extra_id_28>", "<extra_id_29>", "<extra_id_30>", "<extra_id_31>", "<extra_id_32>", "<extra_id_33>", "<extra_id_34>", "<extra_id_35>", "<extra_id_36>", "<extra_id_37>", "<extra_id_38>", "<extra_id_39>", "<extra_id_40>", "<extra_id_41>", "<extra_id_42>", "<extra_id_43>", "<extra_id_44>", "<extra_id_45>", "<extra_id_46>", "<extra_id_47>", "<extra_id_48>", "<extra_id_49>", "<extra_id_50>", "<extra_id_51>", "<extra_id_52>", "<extra_id_53>", "<extra_id_54>", "<extra_id_55>", "<extra_id_56>", "<extra_id_57>", "<extra_id_58>", "<extra_id_59>", "<extra_id_60>", "<extra_id_61>", "<extra_id_62>", "<extra_id_63>", "<extra_id_64>", "<extra_id_65>", "<extra_id_66>", "<extra_id_67>", "<extra_id_68>", "<extra_id_69>", "<extra_id_70>", "<extra_id_71>", "<extra_id_72>", "<extra_id_73>", "<extra_id_74>", "<extra_id_75>", "<extra_id_76>", "<extra_id_77>", "<extra_id_78>", "<extra_id_79>", "<extra_id_80>", "<extra_id_81>", "<extra_id_82>", "<extra_id_83>", "<extra_id_84>", "<extra_id_85>", "<extra_id_86>", "<extra_id_87>", "<extra_id_88>", "<extra_id_89>", "<extra_id_90>", "<extra_id_91>", "<extra_id_92>", "<extra_id_93>", "<extra_id_94>", "<extra_id_95>", "<extra_id_96>", "<extra_id_97>", "<extra_id_98>", "<extra_id_99>"], "sp_model_kwargs": {}, "add_special_tokens": false, "model_max_length": 512, "special_tokens_map_file": null, "tokenizer_file": "/home/hjtrivedi/.cache/huggingface/transformers/276094e085ecb12227136f2e755dc1f68be6f5da32df55ebfb104c791fbbc3c1.8627f1bd5d270a9fd2e5a51c8bec3223896587cc3cfe13edeabb0992ab43c529", "name_or_path": "t5-large", "tokenizer_class": "T5Tokenizer"}
|