File size: 2,338 Bytes
8ebac4c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
license: apache-2.0
base_model: mistralai/Mistral-7B-v0.1
tags:
- generated_from_trainer
model-index:
- name: Mistral-7b
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Mistral-7b
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1919
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 32
- total_train_batch_size: 2048
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 12.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.7591 | 0.64 | 25 | 4.9279 |
| 2.0299 | 1.28 | 50 | 0.8182 |
| 0.6558 | 1.92 | 75 | 0.5750 |
| 0.4785 | 2.56 | 100 | 0.3823 |
| 0.3837 | 3.2 | 125 | 0.2941 |
| 0.3073 | 3.84 | 150 | 0.2318 |
| 0.2119 | 4.48 | 175 | 0.1871 |
| 0.1632 | 5.12 | 200 | 0.1595 |
| 0.1297 | 5.76 | 225 | 0.1487 |
| 0.1035 | 6.39 | 250 | 0.1476 |
| 0.0856 | 7.03 | 275 | 0.1427 |
| 0.0574 | 7.67 | 300 | 0.1482 |
| 0.0448 | 8.31 | 325 | 0.1552 |
| 0.0318 | 8.95 | 350 | 0.1562 |
| 0.0196 | 9.59 | 375 | 0.1709 |
| 0.0146 | 10.23 | 400 | 0.1793 |
| 0.0084 | 10.87 | 425 | 0.1854 |
| 0.0058 | 11.51 | 450 | 0.1919 |
### Framework versions
- Transformers 4.38.1
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|