--- library_name: transformers language: - bn license: mit base_model: microsoft/speecht5_tts tags: - Bengali - generated_from_trainer datasets: - ucalyptus/train-bn model-index: - name: SpeechT5-tuned-bn results: [] --- # SpeechT5-tuned-bn This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the train-bn dataset. It achieves the following results on the evaluation set: - Loss: 0.5572 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 1700 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.7601 | 0.1779 | 100 | 0.6865 | | 0.7091 | 0.3559 | 200 | 0.6498 | | 0.6819 | 0.5338 | 300 | 0.6345 | | 0.6561 | 0.7117 | 400 | 0.6350 | | 0.6353 | 0.8897 | 500 | 0.6044 | | 0.6393 | 1.0676 | 600 | 0.5887 | | 0.6402 | 1.2456 | 700 | 0.5906 | | 0.6194 | 1.4235 | 800 | 0.5867 | | 0.6127 | 1.6014 | 900 | 0.5788 | | 0.608 | 1.7794 | 1000 | 0.5765 | | 0.6129 | 1.9573 | 1100 | 0.5738 | | 0.6044 | 2.1352 | 1200 | 0.5680 | | 0.5894 | 2.3132 | 1300 | 0.5655 | | 0.5952 | 2.4911 | 1400 | 0.5648 | | 0.5963 | 2.6690 | 1500 | 0.5572 | | 0.5889 | 2.8470 | 1600 | 0.5614 | | 0.5897 | 3.0249 | 1700 | 0.5572 | ### Framework versions - Transformers 4.47.0.dev0 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.20.1