Xenova HF staff commited on
Commit
8eea22c
·
verified ·
1 Parent(s): 035b432

Add support for transformers.js

Browse files
Files changed (1) hide show
  1. README.md +32 -0
README.md CHANGED
@@ -8,6 +8,7 @@ tags:
8
  - mteb
9
  - arctic
10
  - snowflake-arctic-embed
 
11
  model-index:
12
  - name: snowflake-arctic-m-long
13
  results:
@@ -3020,6 +3021,37 @@ If you use the long context model with more than 2048 tokens, ensure that you in
3020
  model = AutoModel.from_pretrained('Snowflake/snowflake-arctic-embed-m-long', trust_remote_code=True, rotary_scaling_factor=2)
3021
  ```
3022
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3023
 
3024
  ## FAQ
3025
 
 
8
  - mteb
9
  - arctic
10
  - snowflake-arctic-embed
11
+ - transformers.js
12
  model-index:
13
  - name: snowflake-arctic-m-long
14
  results:
 
3021
  model = AutoModel.from_pretrained('Snowflake/snowflake-arctic-embed-m-long', trust_remote_code=True, rotary_scaling_factor=2)
3022
  ```
3023
 
3024
+ ### Using Transformers.js
3025
+
3026
+ If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) by running:
3027
+ ```bash
3028
+ npm i @xenova/transformers
3029
+ ```
3030
+
3031
+ You can then use the model to compute embeddings as follows:
3032
+
3033
+ ```js
3034
+ import { pipeline, dot } from '@xenova/transformers';
3035
+
3036
+ // Create feature extraction pipeline
3037
+ const extractor = await pipeline('feature-extraction', 'Snowflake/snowflake-arctic-embed-m-long', {
3038
+ quantized: false, // Comment out this line to use the quantized version
3039
+ });
3040
+
3041
+ // Generate sentence embeddings
3042
+ const sentences = [
3043
+ 'Represent this sentence for searching relevant passages: Where can I get the best tacos?',
3044
+ 'The Data Cloud!',
3045
+ 'Mexico City of Course!',
3046
+ ]
3047
+ const output = await extractor(sentences, { normalize: true, pooling: 'cls' });
3048
+
3049
+ // Compute similarity scores
3050
+ const [source_embeddings, ...document_embeddings ] = output.tolist();
3051
+ const similarities = document_embeddings.map(x => dot(source_embeddings, x));
3052
+ console.log(similarities); // [0.36740492125676116, 0.42407774292046635]
3053
+ ```
3054
+
3055
 
3056
  ## FAQ
3057