End of training
Browse files
README.md
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: MoritzLaurer/mDeBERTa-v3-base-mnli-xnli
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- f1
|
8 |
+
- recall
|
9 |
+
- accuracy
|
10 |
+
- precision
|
11 |
+
model-index:
|
12 |
+
- name: mDeBERTa-v3-base-xnli-multilingual-nli-2mil7-base-fine-tuned-text-classificarion-ds-ss
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# mDeBERTa-v3-base-xnli-multilingual-nli-2mil7-base-fine-tuned-text-classificarion-ds-ss
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [MoritzLaurer/mDeBERTa-v3-base-mnli-xnli](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-mnli-xnli) on the None dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 1.0473
|
24 |
+
- F1: 0.7427
|
25 |
+
- Recall: 0.7662
|
26 |
+
- Accuracy: 0.7662
|
27 |
+
- Precision: 0.7444
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 2e-05
|
47 |
+
- train_batch_size: 8
|
48 |
+
- eval_batch_size: 8
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- lr_scheduler_warmup_ratio: 0.1
|
53 |
+
- num_epochs: 5
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | F1 | Recall | Accuracy | Precision |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:--------:|:---------:|
|
59 |
+
| 3.4822 | 1.0 | 883 | 2.0495 | 0.3963 | 0.4790 | 0.4790 | 0.3791 |
|
60 |
+
| 1.6347 | 2.0 | 1766 | 1.2672 | 0.6622 | 0.7030 | 0.7030 | 0.6535 |
|
61 |
+
| 1.0807 | 3.0 | 2649 | 1.0711 | 0.7172 | 0.7420 | 0.7420 | 0.7065 |
|
62 |
+
| 0.8958 | 4.0 | 3532 | 1.0654 | 0.7232 | 0.7489 | 0.7489 | 0.7218 |
|
63 |
+
| 0.7766 | 5.0 | 4415 | 1.0473 | 0.7427 | 0.7662 | 0.7662 | 0.7444 |
|
64 |
+
|
65 |
+
|
66 |
+
### Framework versions
|
67 |
+
|
68 |
+
- Transformers 4.33.1
|
69 |
+
- Pytorch 2.0.1+cu118
|
70 |
+
- Datasets 2.14.5
|
71 |
+
- Tokenizers 0.13.3
|