SkitCon commited on
Commit
207d1d3
·
verified ·
1 Parent(s): 4f5a601

Add basic model card

Browse files
Files changed (1) hide show
  1. README.md +26 -1
README.md CHANGED
@@ -13,4 +13,29 @@ tags:
13
  - seq2seq
14
  - bart
15
  - cows-l2h
16
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  - seq2seq
14
  - bart
15
  - cows-l2h
16
+ ---
17
+
18
+ This model has been trained on 80% of the COWS-L2H dataset for grammatical error correction of Spanish text. The corpus was sentencized, so the model has been fine-tuned for SENTENCE CORRECTION. This model will likely not perform well on an entire paragraph. To correct a paragraph, sentencize the text and run the model for each sentence.
19
+
20
+ BLEU: 0.797 on COWS-L2H
21
+
22
+ Example usage:
23
+
24
+ ```python
25
+ from transformers import AutoTokenizer, BartForConditionalGeneration
26
+
27
+ tokenizer = AutoTokenizer.from_pretrained("SkitCon/gec-spanish-BARTO-COWS-L2H")
28
+ model = BartForConditionalGeneration.from_pretrained("SkitCon/gec-spanish-BARTO-COWS-L2H")
29
+
30
+ input_sentences = ["Yo va al tienda.", "Espero que tú ganas."]
31
+
32
+ tokenized_text = tokenizer(input_sentences, return_tensors="pt")
33
+
34
+ input_ids = source_enc["input_ids"].squeeze()
35
+ attention_mask = source_enc["attention_mask"].squeeze()
36
+
37
+ outputs = model.generate(input_ids=input_ids, attention_mask=attention_mask)
38
+
39
+ for sentence in tokenizer.batch_decode(outputs, skip_special_tokens=True):
40
+ print(sentence)
41
+ ```