--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: [] datasets: - conll2003 language: - en library_name: transformers --- # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the [CoNLL-2003](https://huggingface.co/datasets/conll2003) dataset. It achieves the following results on the evaluation set: - Loss: 0.0597 - Precision: 0.9322 - Recall: 0.9482 - F1: 0.9401 - Accuracy: 0.9863 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0793 | 1.0 | 1756 | 0.0771 | 0.9107 | 0.9342 | 0.9223 | 0.9805 | | 0.0384 | 2.0 | 3512 | 0.0583 | 0.9301 | 0.9455 | 0.9377 | 0.9858 | | 0.0255 | 3.0 | 5268 | 0.0597 | 0.9322 | 0.9482 | 0.9401 | 0.9863 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0