Sin2pi commited on
Commit
0d8b01a
·
verified ·
1 Parent(s): ae7c3ed

Delete model2.ipynb

Browse files
Files changed (1) hide show
  1. model2.ipynb +0 -1166
model2.ipynb DELETED
@@ -1,1166 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "metadata": {},
7
- "outputs": [],
8
- "source": [
9
- "\n",
10
- "import base64, gzip, evaluate, math, os, sys, time\n",
11
- "import gzip, neologdn\n",
12
- "from transformers.modeling_utils import PreTrainedModel \n",
13
- "import collections\n",
14
- "import copy\n",
15
- "import functools\n",
16
- "from functools import partial, wraps\n",
17
- "from threading import Thread\n",
18
- "import gc\n",
19
- "import importlib.metadata\n",
20
- "import inspect\n",
21
- "import itertools\n",
22
- "from sklearn.metrics import accuracy_score, precision_score, f1_score, recall_score\n",
23
- "from torch import amp, Tensor, optim\n",
24
- "from torch.utils.checkpoint import checkpoint\n",
25
- "from contextlib import contextmanager\n",
26
- "from dataclasses import dataclass\n",
27
- "from transformers.models.whisper.modeling_whisper import WhisperPreTrainedModel\n",
28
- "from transformers.models.whisper.generation_whisper import WhisperGenerationMixin\n",
29
- "from transformers.optimization import Adafactor, AdafactorSchedule\n",
30
- "from huggingface_hub import PyTorchModelHubMixin\n",
31
- "from datasets import IterableDatasetDict, Audio, load_dataset, load_from_disk\n",
32
- "import numpy as np\n",
33
- "import torch, transformers, warnings\n",
34
- "from typing import Dict, Iterable, Optional, Tuple, Union, List, Any, Type\n",
35
- "import torch.nn.functional as F\n",
36
- "from torch import Tensor, nn\n",
37
- "import torchaudio, torchaudio.transforms as T\n",
38
- "from transformers import Seq2SeqTrainer, TrainerCallback, Seq2SeqTrainingArguments, WhisperTokenizer, WhisperForConditionalGeneration, WhisperConfig, WhisperProcessor, WhisperFeatureExtractor, WhisperTokenizer, WhisperTokenizerFast\n",
39
- "from whisper.decoding import decode as decode_function\n",
40
- "from whisper.decoding import detect_language as detect_language_function\n",
41
- "from whisper.transcribe import transcribe as transcribe_function\n",
42
- "from torch.utils.tensorboard import SummaryWriter\n",
43
- "\n",
44
- "try:\n",
45
- " from torch.nn.functional import scaled_dot_product_attention\n",
46
- "\n",
47
- " SDPA_AVAILABLE = True\n",
48
- "except (ImportError, RuntimeError, OSError):\n",
49
- " scaled_dot_product_attention = None\n",
50
- " SDPA_AVAILABLE = False\n",
51
- "\n",
52
- "transformers.utils.logging.set_verbosity_error()\n",
53
- "warnings.filterwarnings(action=\"ignore\")\n",
54
- "warnings.warn = lambda *args,**kwargs: None\n",
55
- "torch.autograd.set_detect_anomaly(True)\n",
56
- "device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n",
57
- "dtype = torch.float32\n",
58
- "torch.set_default_dtype(dtype)"
59
- ]
60
- },
61
- {
62
- "cell_type": "code",
63
- "execution_count": null,
64
- "metadata": {},
65
- "outputs": [],
66
- "source": [
67
- "### Model ###\n",
68
- "\n",
69
- "class LayerNorm(nn.Module):\n",
70
- " def __init__(self, num_features, eps=1e-6):\n",
71
- " super(LayerNorm, self).__init__()\n",
72
- " self.gamma = nn.Parameter(torch.ones(num_features))\n",
73
- " self.beta = nn.Parameter(torch.zeros(num_features))\n",
74
- " self.eps = eps\n",
75
- "\n",
76
- " def forward(self, x):\n",
77
- " mean = x.mean(dim=-1, keepdim=True)\n",
78
- " std = x.std(dim=-1, keepdim=True)\n",
79
- " x = (x - mean) / (std + self.eps)\n",
80
- " return self.gamma * x + self.beta\n",
81
- "\n",
82
- "class Linear(nn.Module):\n",
83
- " def __init__(self, in_features: int, out_features: int, dropout_rate = 0.001, use_batchnorm: bool = True, activation: str = 'relu'):\n",
84
- " super(Linear, self).__init__()\n",
85
- " self.linear = nn.Linear(in_features, out_features)\n",
86
- " self.dropout = nn.Dropout(dropout_rate)\n",
87
- " self.use_batchnorm = use_batchnorm\n",
88
- " self.activation = activation\n",
89
- "\n",
90
- " if self.use_batchnorm:\n",
91
- " self.batchnorm = nn.BatchNorm1d(out_features)\n",
92
- " self.reset_parameters()\n",
93
- "\n",
94
- " def reset_parameters(self):\n",
95
- " nn.init.kaiming_uniform_(self.linear.weight, nonlinearity=self.activation)\n",
96
- " if self.linear.bias is not None:\n",
97
- " nn.init.zeros_(self.linear.bias)\n",
98
- "\n",
99
- " def forward(self, x):\n",
100
- " batch_size, seq_len, _ = x.size()\n",
101
- " x = x.view(-1, x.size(-1)) \n",
102
- " x = self.linear(x)\n",
103
- "\n",
104
- " if self.use_batchnorm:\n",
105
- " x = self.batchnorm(x)\n",
106
- "\n",
107
- " x = self.apply_activation(x=x)\n",
108
- " x = self.dropout(x)\n",
109
- " x = x.view(batch_size, seq_len, -1) \n",
110
- " \n",
111
- " return x\n",
112
- "\n",
113
- " def apply_activation(self, x):\n",
114
- " if self.activation == 'relu':\n",
115
- " return F.relu(x)\n",
116
- " elif self.activation == 'tanh':\n",
117
- " return torch.tanh(x)\n",
118
- " elif self.activation == 'sigmoid':\n",
119
- " return torch.sigmoid(x)\n",
120
- " else:\n",
121
- " raise ValueError(f'Unsupported activation function: {self.activation}')\n",
122
- "\n",
123
- "class Conv1d(nn.Conv1d):\n",
124
- " def __init__(self, *args, **kwargs):\n",
125
- " super().__init__(*args, **kwargs)\n",
126
- " self.reset_parameters()\n",
127
- "\n",
128
- " def reset_parameters(self):\n",
129
- " nn.init.kaiming_uniform_(self.weight, nonlinearity='relu')\n",
130
- " if self.bias is not None:\n",
131
- " nn.init.zeros_(self.bias)\n",
132
- "\n",
133
- " def _conv_forward(self, x, weight, bias) -> Tensor:\n",
134
- " weight = self.weight.to(x.dtype)\n",
135
- " bias = None if self.bias is None else self.bias.to(x.dtype)\n",
136
- " return super()._conv_forward(x, weight, bias)\n",
137
- "\n",
138
- "class BiasedCrossAttention(nn.Module):\n",
139
- " def __init__(self, n_state, n_head, dropout_rate=0.001):\n",
140
- " super().__init__()\n",
141
- " self.n_head = n_head\n",
142
- " self.n_state = n_state\n",
143
- " self.head_dim = n_state // n_head\n",
144
- "\n",
145
- " self.query = nn.Linear(n_state, n_state)\n",
146
- " self.key = nn.Linear(n_state, n_state, bias=False)\n",
147
- " self.value = nn.Linear(n_state, n_state)\n",
148
- " self.out = nn.Linear(n_state, n_state)\n",
149
- "\n",
150
- " self.bias = nn.Parameter(torch.zeros(n_head, 1, self.head_dim))\n",
151
- " self.dropout = nn.Dropout(dropout_rate)\n",
152
- " self.norm = LayerNorm(num_features=n_state)\n",
153
- " \n",
154
- " def forward(self, q, k, v, mask=None):\n",
155
- " batch_size, seq_length, _ = q.size()\n",
156
- "\n",
157
- " q = self.query(q).view(batch_size, seq_length, self.n_head, self.head_dim)\n",
158
- " k = self.key(k).view(batch_size, seq_length, self.n_head, self.head_dim)\n",
159
- " v = self.value(v).view(batch_size, seq_length, self.n_head, self.head_dim)\n",
160
- "\n",
161
- " qk = (q @ k.transpose(-2, -1)) / (self.head_dim ** 0.5) + self.bias\n",
162
- " if mask is not None:\n",
163
- " qk = qk.masked_fill(mask == 0, float('-inf'))\n",
164
- "\n",
165
- " w = F.softmax(qk, dim=-1)\n",
166
- " w = self.dropout(w)\n",
167
- "\n",
168
- " out = (w @ v).transpose(1, 2).contiguous().view(batch_size, seq_length, -1)\n",
169
- " out = self.norm(self.out(out) + q.view(batch_size, seq_length, -1))\n",
170
- " return out\n",
171
- "\n",
172
- "class DynamicConvAttention(nn.Module):\n",
173
- " def __init__(self, n_state, n_head, kernel_size=3, dropout_rate=0.001):\n",
174
- " super().__init__()\n",
175
- " self.n_state = n_state\n",
176
- " self.n_head = n_head\n",
177
- " self.kernel_size = kernel_size\n",
178
- "\n",
179
- " self.conv = nn.Conv1d(n_state, n_state, kernel_size, padding=kernel_size // 2, groups=n_head)\n",
180
- " self.dropout = nn.Dropout(dropout_rate)\n",
181
- "\n",
182
- " self.query = nn.Linear(n_state, n_state)\n",
183
- " self.key = nn.Linear(n_state, n_state, bias=False)\n",
184
- " self.value = nn.Linear(n_state, n_state)\n",
185
- " self.out_proj = nn.Linear(n_state, n_state)\n",
186
- "\n",
187
- " self.norm = LayerNorm(num_features=n_state)\n",
188
- "\n",
189
- " def forward(self, x):\n",
190
- " batch_size, seq_len, embed_dim = x.size()\n",
191
- " if embed_dim != self.n_state:\n",
192
- " raise ValueError(f\"Expected embed_dim of {self.n_state}, but got {embed_dim}\")\n",
193
- "\n",
194
- " q = self.query(x)\n",
195
- " k = self.key(x)\n",
196
- " v = self.value(x)\n",
197
- "\n",
198
- " x = x.permute(0, 2, 1)\n",
199
- " conv_out = self.conv(x)\n",
200
- " conv_out = conv_out.permute(0, 2, 1)\n",
201
- " conv_out = self.norm(conv_out)\n",
202
- " conv_out = self.dropout(conv_out)\n",
203
- "\n",
204
- " attention_out = F.softmax(torch.matmul(q, k.transpose(-2, -1)) / (self.n_state ** 0.5), dim=-1)\n",
205
- " attention_out = torch.matmul(attention_out, v)\n",
206
- " \n",
207
- " combined_out = conv_out + attention_out\n",
208
- " combined_out = self.norm(combined_out)\n",
209
- " \n",
210
- " return self.out_proj(self.dropout(combined_out)) + x.permute(0, 2, 1)\n",
211
- "\n",
212
- "class HybridAttention(nn.Module):\n",
213
- " def __init__(self, n_state, n_head, window_size=1, dropout_rate=0.001):\n",
214
- " super().__init__()\n",
215
- " self.local_attn = nn.MultiheadAttention(n_state, n_head, dropout=dropout_rate)\n",
216
- " self.global_attn = nn.MultiheadAttention(n_state, n_head, dropout=dropout_rate)\n",
217
- " self.ln_local = LayerNorm(num_features=n_state)\n",
218
- " self.ln_global = LayerNorm(num_features=n_state)\n",
219
- "\n",
220
- " self.dropout = nn.Dropout(dropout_rate)\n",
221
- " self.window_size = window_size\n",
222
- "\n",
223
- " def forward(self, x):\n",
224
- " x_local = self.ln_local(x)\n",
225
- " x_global = self.ln_global(x)\n",
226
- " x_local = x_local.permute(1, 0, 2)\n",
227
- " x_global = x_global.permute(1, 0, 2)\n",
228
- " local_out = self.sliding_window_attention(x_local)\n",
229
- " global_out, _ = self.global_attn(x_global, x_global, x_global)\n",
230
- " combined_out = local_out + global_out\n",
231
- " combined_out = combined_out.permute(1, 0, 2)\n",
232
- " return self.dropout(combined_out)\n",
233
- "\n",
234
- " def sliding_window_attention(self, x):\n",
235
- " batch_size, seq_len, n_state = x.size()\n",
236
- " window_size = min(self.window_size, max(1, seq_len // 4))\n",
237
- " output = torch.zeros_like(x, device=x.device, dtype=x.dtype)\n",
238
- "\n",
239
- " for i in range(0, seq_len, step=window_size):\n",
240
- " end = min(i + window_size, seq_len)\n",
241
- " query = x[i:end, :, :]\n",
242
- " start = max(0, i - window_size)\n",
243
- " key = x[start:end, :, :]\n",
244
- " value = x[start:end, :, :]\n",
245
- " attn_output, _ = self.local_attn(query, key, value)\n",
246
- " output[i:end, :, :] = attn_output[:end - i, :, :]\n",
247
- "\n",
248
- " return output\n",
249
- "\n",
250
- "class CombinedRotaryEmbedding(nn.Module):\n",
251
- " def __init__(self, n_state, n_head, num_rotations, base=10000, checkpointing=False):\n",
252
- " super().__init__()\n",
253
- " self.n_state = n_state\n",
254
- " self.n_head = n_head\n",
255
- " self.h_dim = n_state // n_head\n",
256
- " self.num_rotations = num_rotations\n",
257
- " self.base = base\n",
258
- " self.checkpointing = checkpointing\n",
259
- " \n",
260
- " self.thetas = nn.Parameter(torch.zeros(num_rotations))\n",
261
- " self.rotation_pairs = nn.Parameter(torch.rand(num_rotations, 2) * self.h_dim)\n",
262
- "\n",
263
- " self.theta_scale = nn.Parameter(torch.ones(1)) \n",
264
- "\n",
265
- " self.rotation_matrix = nn.Parameter(torch.eye(self.h_dim))\n",
266
- " \n",
267
- " self.inv_freq = nn.Parameter(1.0 / (self.base ** (torch.arange(0, self.h_dim, 2).float() / self.h_dim)))\n",
268
- " \n",
269
- " def givens_rotation_matrix(self, n_state, i, j, theta):\n",
270
- " G = torch.eye(n_state, device=theta.device)\n",
271
- " G[i, i] = math.cos(theta)\n",
272
- " G[i, j] = -math.sin(theta)\n",
273
- " G[j, i] = math.sin(theta)\n",
274
- " G[j, j] = math.cos(theta)\n",
275
- " return G\n",
276
- " \n",
277
- " def update_base(self, new_base):\n",
278
- " self.base = new_base\n",
279
- " self.inv_freq = nn.Parameter(1.0 / (self.base ** (torch.arange(0, self.h_dim, 2).float() / self.h_dim)))\n",
280
- " \n",
281
- " def reset_parameters(self):\n",
282
- " nn.init.orthogonal_(self.rotation_matrix)\n",
283
- " nn.init.zeros_(self.thetas)\n",
284
- " \n",
285
- " def forward(self, x):\n",
286
- " if self.checkpointing:\n",
287
- " return checkpoint(self._forward, x)\n",
288
- " else:\n",
289
- " return self._forward(x)\n",
290
- " \n",
291
- " def _forward(self, x):\n",
292
- " if x.dim() not in [3, 4]:\n",
293
- " raise ValueError(f\"Expected input tensor to be 3D or 4D, but got {x.dim()}D\")\n",
294
- " \n",
295
- " if x.dim() == 3:\n",
296
- " batch_size, seq_len, n_state = x.size()\n",
297
- " x = x.view(batch_size, seq_len, self.n_head, self.h_dim)\n",
298
- " else:\n",
299
- " batch_size, seq_len, n_head, h_dim = x.size()\n",
300
- " if n_head != self.n_head or h_dim != self.h_dim:\n",
301
- " raise ValueError(f\"Expected n_head {self.n_head} and h_dim {self.h_dim}, but got n_head {n_head} and h_dim {h_dim}\")\n",
302
- " \n",
303
- " x = x.reshape(-1, self.h_dim)\n",
304
- " \n",
305
- " for k in range(self.num_rotations):\n",
306
- " i, j = self.rotation_pairs[k].long()\n",
307
- " \n",
308
- " theta = self.thetas[k] * self.theta_scale \n",
309
- " \n",
310
- " G = self.givens_rotation_matrix(n_state=self.h_dim, i=i, j=j, theta=theta)\n",
311
- " x = torch.matmul(x, G)\n",
312
- " \n",
313
- " x = torch.matmul(x, self.rotation_matrix)\n",
314
- " \n",
315
- " x = x.view(batch_size, seq_len, self.n_head, self.h_dim)\n",
316
- " \n",
317
- " sinusoid_inp = torch.einsum('i, j -> i j', torch.arange(seq_len, device=x.device), self.inv_freq.to(x.device))\n",
318
- " sin = sinusoid_inp.sin()[None, :, None, :]\n",
319
- " cos = sinusoid_inp.cos()[None, :, None, :]\n",
320
- " \n",
321
- " x1, x2 = x[..., ::2], x[..., 1::2]\n",
322
- " x = torch.cat([x1 * cos - x2 * sin, x1 * sin + x2 * cos], dim=-1)\n",
323
- " \n",
324
- " x = x.view(batch_size, seq_len, self.n_state)\n",
325
- " \n",
326
- " return x\n",
327
- "\n",
328
- "class LearnedSinusoidalEmbeddings(nn.Module):\n",
329
- " def __init__(self, n_ctx, n_state, checkpointing=False):\n",
330
- " super().__init__()\n",
331
- " self.n_ctx = n_ctx\n",
332
- " self.n_state = n_state\n",
333
- " self.checkpointing = checkpointing\n",
334
- "\n",
335
- " position = torch.arange(0, n_ctx, dtype=torch.float).unsqueeze(1)\n",
336
- " div_term = torch.exp(torch.arange(0, n_state, 2).float() * -(math.log(10000.0) / n_state))\n",
337
- " features = torch.zeros(n_ctx, n_state)\n",
338
- " features[:, 0::2] = torch.sin(position * div_term)\n",
339
- " features[:, 1::2] = torch.cos(position * div_term)\n",
340
- " self.register_buffer('sinusoidal_features', features)\n",
341
- "\n",
342
- " self.positional_embeddings = nn.Parameter(self.sinusoidal_features.clone())\n",
343
- "\n",
344
- " def forward(self, positions):\n",
345
- " if self.checkpointing:\n",
346
- " position_embeddings = checkpoint(lambda x: self.positional_embeddings[x], positions)\n",
347
- " else:\n",
348
- " position_embeddings = self.positional_embeddings[positions]\n",
349
- "\n",
350
- " position_embeddings = torch.nn.functional.normalize(position_embeddings, p=2, dim=-1)\n",
351
- " return position_embeddings\n",
352
- "\n",
353
- "class MultiHeadAttention(nn.Module):\n",
354
- " use_sdpa = True\n",
355
- "\n",
356
- " def __init__(self, n_state: int, n_head: int, max_rel_dist: int = 1, base: int = 10000):\n",
357
- " super().__init__()\n",
358
- " assert n_state % n_head == 0, \"n_state must be divisible by n_head\"\n",
359
- " self.n_head = n_head\n",
360
- " self.h_dim = n_state // n_head\n",
361
- " assert self.h_dim % 2 == 0, \"Head dimension must be even for rotary embeddings\"\n",
362
- "\n",
363
- " self.positional_scaling = nn.Parameter(torch.ones(1))\n",
364
- "\n",
365
- " self.query = nn.Linear(n_state, n_state)\n",
366
- " self.key = nn.Linear(n_state, n_state, bias=False)\n",
367
- " self.value = nn.Linear(n_state, n_state)\n",
368
- " self.out = nn.Linear(n_state, n_state)\n",
369
- "\n",
370
- " self.max_rel_dist = max_rel_dist\n",
371
- " self.base = base\n",
372
- " inv_freq = 1.0 / (self.base ** (torch.arange(0, self.h_dim, 2).float() / self.h_dim))\n",
373
- " self.register_buffer('inv_freq', inv_freq)\n",
374
- " self.rel_pos_bias = nn.Embedding(2 * self.max_rel_dist - 1, self.n_head)\n",
375
- " self.rel_pos_bias.weight.data.fill_(0)\n",
376
- "\n",
377
- " self.combined_rotary = CombinedRotaryEmbedding(\n",
378
- " n_state=n_state,\n",
379
- " n_head=n_head,\n",
380
- " num_rotations=self.h_dim // 2,\n",
381
- " base=base,\n",
382
- " checkpointing=False \n",
383
- " )\n",
384
- "\n",
385
- " if device:\n",
386
- " self.to(device)\n",
387
- "\n",
388
- " def update_base(self, new_base): \n",
389
- " self.base = new_base \n",
390
- " inv_freq = 1.0 / (self.base ** (torch.arange(0, self.h_dim, 2).float() / self.h_dim)) \n",
391
- " self.register_buffer('inv_freq', inv_freq) \n",
392
- " self.combined_rotary.update_base(new_base=new_base)\n",
393
- "\n",
394
- " def forward(self, x, xa = None, mask = None, kv_cache = None):\n",
395
- " q = self.query(x)\n",
396
- "\n",
397
- " if kv_cache is None or xa is None or 'k' not in kv_cache:\n",
398
- " k_input = x if xa is None else xa\n",
399
- " k = self.key(k_input)\n",
400
- " v = self.value(k_input)\n",
401
- " if kv_cache is not None:\n",
402
- " kv_cache['k'] = k\n",
403
- " kv_cache['v'] = v\n",
404
- " else:\n",
405
- " k = kv_cache['k']\n",
406
- " v = kv_cache['v']\n",
407
- "\n",
408
- " q = q.view(q.shape[0], q.shape[1], self.n_head, -1)\n",
409
- " k = k.view(k.shape[0], k.shape[1], self.n_head, -1)\n",
410
- " v = v.view(v.shape[0], v.shape[1], self.n_head, -1)\n",
411
- "\n",
412
- " q = self.combined_rotary(q) \n",
413
- " k = self.combined_rotary(k)\n",
414
- "\n",
415
- " q = q.view(q.shape[0], q.shape[1], -1)\n",
416
- " k = k.view(k.shape[0], k.shape[1], -1)\n",
417
- "\n",
418
- " wv, qk = self.qkv_attention(q=q, k=k, v=v, mask=mask)\n",
419
- " return self.out(wv), qk\n",
420
- " \n",
421
- " def qkv_attention(self, q, k, v, mask = None):\n",
422
- " n_batch, n_ctx, n_state = q.shape\n",
423
- "\n",
424
- " scale = (n_state // self.n_head) ** -0.25\n",
425
- " q = q.view(*q.shape[:2], self.n_head, -1).permute(0, 2, 1, 3)\n",
426
- " k = k.view(*k.shape[:2], self.n_head, -1).permute(0, 2, 1, 3)\n",
427
- " v = v.view(*v.shape[:2], self.n_head, -1).permute(0, 2, 1, 3)\n",
428
- "\n",
429
- " qk = (q * scale) @ (k * scale).transpose(-1, -2)\n",
430
- "\n",
431
- " seq_len_q = q.size(2)\n",
432
- " seq_len_k = k.size(2)\n",
433
- "\n",
434
- " positions = torch.arange(seq_len_q, device=q.device).unsqueeze(1) - torch.arange(seq_len_k, device=q.device).unsqueeze(0)\n",
435
- " positions = positions.clamp(-self.max_rel_dist + 1, self.max_rel_dist - 1) + self.max_rel_dist - 1\n",
436
- " rel_bias = self.rel_pos_bias(positions) \n",
437
- " rel_bias = rel_bias.permute(2, 0, 1).unsqueeze(0) \n",
438
- "\n",
439
- " qk = qk + rel_bias\n",
440
- "\n",
441
- " if mask is not None:\n",
442
- " qk = qk + mask[:n_ctx, :n_ctx]\n",
443
- " qk = qk.float()\n",
444
- "\n",
445
- " w = F.softmax(qk, dim=-1).to(q.dtype)\n",
446
- " out = (w @ v).permute(0, 2, 1, 3).flatten(start_dim=2)\n",
447
- " qk = qk.detach()\n",
448
- "\n",
449
- " return out, qk\n",
450
- "\n",
451
- "class ResidualAttentionBlock(nn.Module):\n",
452
- " def __init__(self, n_state, n_head, cross_attention = False, max_rel_dist = 1, checkpointing=False):\n",
453
- " super().__init__()\n",
454
- "\n",
455
- " self.attn = MultiHeadAttention(n_state=n_state, n_head=n_head)\n",
456
- " self.attn_ln = LayerNorm(num_features=n_state)\n",
457
- " self.checkpointing = checkpointing\n",
458
- " self.max_rel_dist = max_rel_dist\n",
459
- "\n",
460
- " self.cross_attn = (\n",
461
- " MultiHeadAttention(n_state=n_state, n_head=n_head) if cross_attention else None\n",
462
- " )\n",
463
- " self.cross_attn_ln = LayerNorm(num_features=n_state) if cross_attention else None\n",
464
- "\n",
465
- " n_mlp = n_state * 4\n",
466
- " self.mlp = nn.Sequential(\n",
467
- " Linear(in_features=n_state, out_features=n_mlp), nn.GELU(), Linear(in_features=n_mlp, out_features=n_state)\n",
468
- " )\n",
469
- " self.mlp_ln = LayerNorm(num_features=n_state)\n",
470
- "\n",
471
- " def forward(self, x, xa = None, mask = None, kv_cache = None):\n",
472
- " if self.checkpointing:\n",
473
- " x = checkpoint(self._attn_forward, x, mask, kv_cache)\n",
474
- " else:\n",
475
- " x = self._attn_forward(x=x, mask=mask, kv_cache=kv_cache)\n",
476
- "\n",
477
- " if self.cross_attn:\n",
478
- " if self.checkpointing:\n",
479
- " x = checkpoint(self._cross_attn_forward, x, xa, kv_cache)\n",
480
- " else:\n",
481
- " x = self._cross_attn_forward(x=x, xa=xa, kv_cache=kv_cache)\n",
482
- "\n",
483
- " if self.checkpointing:\n",
484
- " x = checkpoint(self._mlp_forward, x)\n",
485
- " else:\n",
486
- " x = self._mlp_forward(x=x)\n",
487
- "\n",
488
- " return x\n",
489
- "\n",
490
- " def _attn_forward(self, x, mask, kv_cache):\n",
491
- " residual = x\n",
492
- " x = self.attn_ln(x)\n",
493
- " x = residual + self.attn(x, mask=mask, kv_cache=kv_cache)[0]\n",
494
- " return x\n",
495
- "\n",
496
- " def _cross_attn_forward(self, x, xa, kv_cache):\n",
497
- " residual = x\n",
498
- " x = self.cross_attn_ln(x)\n",
499
- " x = residual + self.cross_attn(x, xa, kv_cache=kv_cache)[0]\n",
500
- " return x\n",
501
- "\n",
502
- " def _mlp_forward(self, x):\n",
503
- " residual = x\n",
504
- " x = self.mlp_ln(x)\n",
505
- " x = residual + self.mlp(x)\n",
506
- " return x\n",
507
- "\n",
508
- "class AudioEncoder(nn.Module):\n",
509
- " def __init__(self, n_mels: int, n_ctx: int, n_state: int, n_head: int, n_layer: int, max_rel_dist = 1, cross_attention=True, checkpointing=False, base=10000):\n",
510
- " super().__init__()\n",
511
- " self.conv1 = nn.Conv1d(n_mels, n_state, kernel_size=3, padding=1)\n",
512
- " self.conv2 = nn.Conv1d(n_state, n_state, kernel_size=3, stride=2, padding=1)\n",
513
- " self.positional_embedding = LearnedSinusoidalEmbeddings(n_ctx=n_ctx, n_state=n_state, checkpointing=checkpointing)\n",
514
- " self.checkpointing = checkpointing\n",
515
- " self.h_dim = n_state // n_head\n",
516
- "\n",
517
- " self.combined_rotary = CombinedRotaryEmbedding(\n",
518
- " n_state=n_state,\n",
519
- " n_head=n_head,\n",
520
- " num_rotations=self.h_dim // 2,\n",
521
- " base=base,\n",
522
- " checkpointing=False \n",
523
- " )\n",
524
- "\n",
525
- " self.blocks = nn.ModuleList(\n",
526
- " [ResidualAttentionBlock(n_state=n_state, n_head=n_head, cross_attention=cross_attention, max_rel_dist=max_rel_dist, checkpointing=checkpointing) for _ in range(n_layer)]\n",
527
- " )\n",
528
- " self.ln_post = LayerNorm(num_features=n_state)\n",
529
- "\n",
530
- " def update_base(self, new_base):\n",
531
- " self.combined_rotary.update_base(new_base=new_base)\n",
532
- " for block in self.blocks:\n",
533
- " if isinstance(block.attn, MultiHeadAttention, CombinedRotaryEmbedding):\n",
534
- " block.attn.update_base(new_base)\n",
535
- " if block.cross_attn and isinstance(block.cross_attn, MultiHeadAttention, CombinedRotaryEmbedding):\n",
536
- " block.cross_attn.update_base(new_base)\n",
537
- "\n",
538
- " def forward(self, x):\n",
539
- " if self.checkpointing:\n",
540
- " x = checkpoint(self._conv_forward, x)\n",
541
- " else:\n",
542
- " x = self._conv_forward(x=x)\n",
543
- "\n",
544
- " for block in self.blocks:\n",
545
- " if self.checkpointing:\n",
546
- " x = checkpoint(block, x)\n",
547
- " else:\n",
548
- " x = block(x)\n",
549
- "\n",
550
- " x = self.ln_post(x)\n",
551
- " return x\n",
552
- "\n",
553
- " def _conv_forward(self, x):\n",
554
- " x = F.gelu(self.conv1(x))\n",
555
- " x = F.gelu(self.conv2(x))\n",
556
- " x = x.permute(0, 2, 1)\n",
557
- "\n",
558
- " x = self.combined_rotary(x)\n",
559
- "\n",
560
- " pos_emb = self.positional_embedding(torch.arange(x.size(1), device=x.device)).unsqueeze(0)\n",
561
- " x = x + pos_emb\n",
562
- " return x\n",
563
- "\n",
564
- "class TextDecoder(nn.Module):\n",
565
- " def __init__(self, vocab_size, n_ctx, n_state, n_head, n_layer, max_rel_dist = 1, cross_attention=True, checkpointing=False, base=10000):\n",
566
- " super().__init__()\n",
567
- " self.token_embedding = nn.Embedding(vocab_size, n_state)\n",
568
- " self.positional_embedding = LearnedSinusoidalEmbeddings(n_ctx=n_ctx, n_state=n_state, checkpointing=checkpointing)\n",
569
- " self.checkpointing = checkpointing\n",
570
- " self.n_head = n_head\n",
571
- " self.h_dim = n_state // n_head\n",
572
- " \n",
573
- " self.combined_rotary = CombinedRotaryEmbedding(\n",
574
- " n_state=n_state,\n",
575
- " n_head=n_head,\n",
576
- " num_rotations=self.h_dim // 2, \n",
577
- " base=base,\n",
578
- " checkpointing=False \n",
579
- " )\n",
580
- "\n",
581
- " self.blocks = nn.ModuleList([\n",
582
- " ResidualAttentionBlock(n_state=n_state, n_head=n_head, cross_attention=cross_attention, max_rel_dist=max_rel_dist, checkpointing=checkpointing)\n",
583
- " for _ in range(n_layer)\n",
584
- " ])\n",
585
- " self.ln = LayerNorm(num_features=n_state)\n",
586
- " mask = torch.empty(n_ctx, n_ctx).fill_(-np.inf).triu_(1)\n",
587
- " self.register_buffer(\"mask\", mask, persistent=False)\n",
588
- "\n",
589
- " def update_base(self, new_base):\n",
590
- " self.combined_rotary.update_base(new_base=new_base)\n",
591
- " for block in self.blocks:\n",
592
- " if isinstance(block.attn, MultiHeadAttention, CombinedRotaryEmbedding):\n",
593
- " block.attn.update_base(new_base)\n",
594
- " if block.cross_attn and isinstance(block.cross_attn, MultiHeadAttention, CombinedRotaryEmbedding):\n",
595
- " block.cross_attn.update_base(new_base)\n",
596
- "\n",
597
- " def forward(self, x, xa, kv_cache = None):\n",
598
- " if self.checkpointing:\n",
599
- " x = checkpoint(self._embedding_forward, x, xa, kv_cache)\n",
600
- " else:\n",
601
- " x = self._embedding_forward(x=x, xa=xa, kv_cache=kv_cache)\n",
602
- " for block in self.blocks:\n",
603
- " if self.checkpointing:\n",
604
- " x = checkpoint(block, x, xa, self.mask, kv_cache)\n",
605
- " else:\n",
606
- " x = block(x, xa, self.mask, kv_cache)\n",
607
- " x = self.ln(x)\n",
608
- " logits = (x @ torch.transpose(self.token_embedding.weight.to(x.dtype), 0, 1)).float()\n",
609
- " return logits\n",
610
- "\n",
611
- " def _embedding_forward(self, x, xa, kv_cache):\n",
612
- " offset = next(iter(kv_cache.values())).shape[1] if kv_cache else 0\n",
613
- " positions = torch.arange(x.shape[1], device=x.device) + offset\n",
614
- " pos_emb = self.positional_embedding(positions).unsqueeze(0)\n",
615
- " x = self.token_embedding(x) + pos_emb\n",
616
- " x = x.to(xa.dtype)\n",
617
- " batch_size, seq_length, embedding_dim = x.shape\n",
618
- " num_heads = self.n_head\n",
619
- " head_dim = embedding_dim // num_heads\n",
620
- " x = x.view(batch_size, seq_length, num_heads, head_dim)\n",
621
- " x = self.combined_rotary(x)\n",
622
- " x = x.view(batch_size, seq_length, embedding_dim)\n",
623
- " return x\n",
624
- " \n",
625
- "class Echo(WhisperPreTrainedModel, PyTorchModelHubMixin):\n",
626
- " config_class = WhisperConfig\n",
627
- "\n",
628
- " def __init__(self, config: WhisperConfig):\n",
629
- " super().__init__(config)\n",
630
- " self.config = config\n",
631
- "\n",
632
- " self.n_mels = self.config.num_mel_bins\n",
633
- " self.n_audio_ctx = self.config.max_source_positions\n",
634
- " self.n_audio_state = self.config.d_model\n",
635
- " self.n_audio_head = self.config.encoder_attention_heads\n",
636
- " self.n_audio_layer = self.config.encoder_layers\n",
637
- " self.vocab_size = self.config.vocab_size\n",
638
- " self.n_text_ctx = self.config.max_target_positions\n",
639
- " self.n_text_state = self.config.d_model\n",
640
- " self.n_text_head = self.config.decoder_attention_heads\n",
641
- " self.n_text_layer = self.config.decoder_layers\n",
642
- " self.checkpointing = self.config.checkpointing\n",
643
- " self.max_rel_dist = self.config.max_rel_dist\n",
644
- " self.cross_attention = self.config.cross_attention\n",
645
- " self.base = self.config.base\n",
646
- "\n",
647
- " self.encoder = AudioEncoder(\n",
648
- " n_mels=self.config.n_mels,\n",
649
- " n_ctx=self.config.n_audio_ctx,\n",
650
- " n_state=self.config.n_audio_state,\n",
651
- " n_head=self.config.n_audio_head,\n",
652
- " n_layer=self.config.n_audio_layer,\n",
653
- " max_rel_dist=self.config.checkpointing,\n",
654
- " cross_attention=self.config.max_rel_dist,\n",
655
- " checkpointing=self.config.cross_attention,\n",
656
- " base=self.config.base,\n",
657
- " )\n",
658
- " self.decoder = TextDecoder(\n",
659
- " vocab_size=self.config.vocab_size,\n",
660
- " n_ctx=self.config.n_text_ctx,\n",
661
- " n_state=self.config.n_text_state,\n",
662
- " n_head=self.config.n_text_head,\n",
663
- " n_layer=self.config.n_text_layer,\n",
664
- " max_rel_dist=self.config.checkpointing,\n",
665
- " cross_attention=self.config.max_rel_dist,\n",
666
- " checkpointing=self.config.cross_attention,\n",
667
- " base=self.config.base,\n",
668
- " )\n",
669
- "\n",
670
- " all_heads = torch.zeros(self.config.n_text_layer, self.config.n_text_head, dtype=torch.bool)\n",
671
- " all_heads[self.config.n_text_layer // 2:] = True\n",
672
- " self.register_buffer(\"alignment_heads\", all_heads.to_sparse(), persistent=False)\n",
673
- "\n",
674
- " self.best_loss = float('inf')\n",
675
- " self.base = 10000 \n",
676
- "\n",
677
- " def update_base(self, new_base):\n",
678
- " self.encoder.combined_rotary.update_base(new_base=new_base)\n",
679
- " self.decoder.combined_rotary.update_base(new_base=new_base)\n",
680
- "\n",
681
- " for name, module in self.encoder.named_modules():\n",
682
- " if isinstance(module, (MultiHeadAttention, CombinedRotaryEmbedding)):\n",
683
- " module.update_base(new_base=new_base)\n",
684
- "\n",
685
- " for name, module in self.decoder.named_modules():\n",
686
- " if isinstance(module, (MultiHeadAttention, CombinedRotaryEmbedding)):\n",
687
- " module.update_base(new_base=new_base)\n",
688
- "\n",
689
- " def adjust_base(self, loss, factor=1.05):\n",
690
- " if loss < self.best_loss:\n",
691
- " new_base = self.base * factor\n",
692
- " else:\n",
693
- " new_base = self.base / factor\n",
694
- "\n",
695
- " self.update_base(new_base=new_base)\n",
696
- " self.best_loss = loss\n",
697
- " # print(f\"Adjusted base: {new_base}\")\n",
698
- "\n",
699
- " @staticmethod\n",
700
- " def shift_tokens_right(input_ids, pad_token_id, decoder_start_token_id) -> torch.Tensor:\n",
701
- " shifted_input_ids = input_ids.new_zeros(input_ids.shape)\n",
702
- " shifted_input_ids[:, 1:] = input_ids[:, :-1]\n",
703
- " shifted_input_ids[:, 0] = decoder_start_token_id\n",
704
- " shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)\n",
705
- " return shifted_input_ids\n",
706
- "\n",
707
- " def forward(self, input_features, labels=None, dec_input_ids=None):\n",
708
- " if labels is not None:\n",
709
- " if dec_input_ids is None:\n",
710
- " dec_input_ids = self.shift_tokens_right(\n",
711
- " input_ids=labels, pad_token_id=self.config.pad_token_id, decoder_start_token_id=self.config.decoder_start_token_id\n",
712
- " )\n",
713
- "\n",
714
- " encoded_features = self.encoder(input_features).to(device)\n",
715
- " logits = self.decoder(dec_input_ids, encoded_features)\n",
716
- "\n",
717
- " loss = None\n",
718
- " if labels is not None:\n",
719
- " loss_fct = torch.nn.CrossEntropyLoss(ignore_index=-100) \n",
720
- " labels = labels.to(logits.device).long()\n",
721
- " loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))\n",
722
- "\n",
723
- " self.adjust_base(loss.item())\n",
724
- "\n",
725
- " return {\n",
726
- " \"loss\": loss,\n",
727
- " \"logits\": logits,\n",
728
- " }\n",
729
- "\n",
730
- " def _initialize_weights(self):\n",
731
- " nn.init.normal_(self.decoder.token_embedding.weight, mean=0.0, std=self.config.init_std)\n",
732
- " if hasattr(self.decoder.positional_embedding, 'weight'):\n",
733
- " nn.init.normal_(self.decoder.positional_embedding.weight, mean=0.0, std=self.config.init_std)\n",
734
- " for block in self.decoder.blocks:\n",
735
- " for layer in block.children():\n",
736
- " if isinstance(layer, nn.Linear):\n",
737
- " nn.init.xavier_normal_(layer.weight)\n",
738
- " if layer.bias is not None:\n",
739
- " nn.init.zeros_(layer.bias)\n",
740
- "\n",
741
- " nn.init.constant_(self.decoder.ln.gamma, 1)\n",
742
- " if self.decoder.ln.beta is not None:\n",
743
- " nn.init.constant_(self.decoder.ln.beta, 0)\n",
744
- "\n",
745
- " nn.init.xavier_normal_(self.encoder.conv1.weight)\n",
746
- " if self.encoder.conv1.bias is not None:\n",
747
- " nn.init.zeros_(self.encoder.conv1.bias)\n",
748
- "\n",
749
- " nn.init.kaiming_normal_(self.encoder.conv2.weight, mode='fan_out', nonlinearity='relu')\n",
750
- " if self.encoder.conv2.bias is not None:\n",
751
- " nn.init.zeros_(self.encoder.conv2.bias)\n",
752
- "\n",
753
- " nn.init.constant_(self.encoder.ln_post.gamma, 1)\n",
754
- " if self.encoder.ln_post.beta is not None:\n",
755
- " nn.init.constant_(self.encoder.ln_post.beta, 0)\n",
756
- " \n",
757
- " def apply_initialization(self):\n",
758
- " self._initialize_weights()\n",
759
- "\n",
760
- " def set_alignment_heads(self, dump: bytes):\n",
761
- " array = np.frombuffer(\n",
762
- " gzip.decompress(base64.b85decode(dump)), dtype=bool\n",
763
- " ).copy()\n",
764
- " mask = torch.from_numpy(array).reshape(\n",
765
- " self.config.n_text_layer, self.config.n_text_head\n",
766
- " )\n",
767
- " self.register_buffer(\"alignment_heads\", mask.to_sparse(), persistent=False)\n",
768
- "\n",
769
- " def embed_audio(self, mel):\n",
770
- " return self.encoder(mel)\n",
771
- "\n",
772
- " def logits(self, labels, input_features):\n",
773
- " return self.decoder(labels, input_features)\n",
774
- "\n",
775
- " @property\n",
776
- " def device(self):\n",
777
- " return next(self.parameters()).device\n",
778
- "\n",
779
- " @property\n",
780
- " def is_multilingual(self):\n",
781
- " return self.config.vocab_size >= len(tokenizer)\n",
782
- "\n",
783
- " @property\n",
784
- " def num_languages(self):\n",
785
- " return self.config.vocab_size - (len(tokenizer)-100) - int(self.is_multilingual)\n",
786
- "\n",
787
- " def install_kv_cache_hooks(self, cache = None):\n",
788
- " cache = {**cache} if cache is not None else {}\n",
789
- " hooks = []\n",
790
- "\n",
791
- " def save_to_cache(module, _, output):\n",
792
- " if module not in cache or output.shape[1] > self.config.n_text_ctx:\n",
793
- " cache[module] = output\n",
794
- " else:\n",
795
- " cache[module] = torch.cat([cache[module], output], dim=1).detach()\n",
796
- " return cache[module]\n",
797
- "\n",
798
- " def install_hooks(layer: nn.Module):\n",
799
- " if isinstance(layer, MultiHeadAttention):\n",
800
- " hooks.append(layer.key.register_forward_hook(save_to_cache))\n",
801
- " hooks.append(layer.value.register_forward_hook(save_to_cache))\n",
802
- "\n",
803
- " self.decoder.apply(install_hooks)\n",
804
- " return cache, hooks\n",
805
- "\n",
806
- " detect_language = detect_language_function\n",
807
- " transcribe = transcribe_function\n",
808
- " decode = decode_function\n",
809
- "\n",
810
- " def get_encoder(self):\n",
811
- " return self.encoder\n",
812
- "\n",
813
- " def prepare_inputs_for_generation(self, input_ids, **kwargs):\n",
814
- " return {'input_features': input_ids}\n",
815
- "\n",
816
- " def _prepare_decoder_input_ids_for_generation(self, batch_size, decoder_start_token_id=None, bos_token_id=None):\n",
817
- " return torch.ones((batch_size, 1), dtype=torch.long, device=self.device) * self.config.decoder_start_token_id\n",
818
- "\n",
819
- " def can_generate(self):\n",
820
- " return True\n",
821
- " \n",
822
- " def generate(self, inputs, **kwargs):\n",
823
- " encoder_outputs = self.encoder(inputs)\n",
824
- " decoder_input_ids = torch.zeros((inputs.size(0), 1), dtype=torch.long, device=inputs.device)\n",
825
- " outputs = self.decoder(decoder_input_ids, encoder_outputs)\n",
826
- " return outputs.argmax(dim=-1)\n",
827
- "\n",
828
- " def gradient_checkpointing_enable(self, gradient_checkpointing_kwargs=None):\n",
829
- " if not self.supports_gradient_checkpointing:\n",
830
- " raise ValueError(f\"{self.__class__.__name__} does not support gradient checkpointing.\")\n",
831
- " if gradient_checkpointing_kwargs is None:\n",
832
- " gradient_checkpointing_kwargs = {\"use_reentrant\": True}\n",
833
- " gradient_checkpointing_func = functools.partial(checkpoint, **gradient_checkpointing_kwargs)\n",
834
- " _is_using_old_format = \"value\" in inspect.signature(self._set_gradient_checkpointing).parameters\n",
835
- " if not _is_using_old_format:\n",
836
- " self._set_gradient_checkpointing(enable=True, gradient_checkpointing_func=gradient_checkpointing_func)\n",
837
- " else:\n",
838
- " self.apply(partial(self._set_gradient_checkpointing, value=True))\n",
839
- " if getattr(self, \"_hf_peft_config_loaded\", False):\n",
840
- " self.enable_input_require_grads()\n",
841
- "\n",
842
- "config = WhisperConfig(\n",
843
- " n_mels=128,\n",
844
- " n_audio_ctx=1500,\n",
845
- " n_audio_state=1024,\n",
846
- " n_audio_head=16,\n",
847
- " n_audio_layer=24,\n",
848
- " vocab_size=51865,\n",
849
- " n_text_ctx=448,\n",
850
- " n_text_state=1024,\n",
851
- " n_text_head=16,\n",
852
- " n_text_layer=20,\n",
853
- " max_rel_dist=50,\n",
854
- " cross_attention=True,\n",
855
- " checkpointing=True,\n",
856
- " base=10000,\n",
857
- " bos_token_id = 50257,\n",
858
- " eos_token_id = 50257,\n",
859
- " pad_token_id = 50257,\n",
860
- " decoder_start_token_id = 50258,\n",
861
- " is_encoder_decoder = True,\n",
862
- " init_std=0.02,\n",
863
- " )"
864
- ]
865
- },
866
- {
867
- "cell_type": "code",
868
- "execution_count": null,
869
- "metadata": {},
870
- "outputs": [],
871
- "source": [
872
- "class GradientClippingCallback(TrainerCallback):\n",
873
- " def on_step_end(self, args, state, control, **kwargs):\n",
874
- " torch.nn.utils.clip_grad_norm_(kwargs[\"model\"].parameters(), max_norm=0.95)\n",
875
- "\n",
876
- "class MetricsCallback(TrainerCallback):\n",
877
- " def __init__(self, tb_writer, tokenizer, metric, log_every_n_steps=20):\n",
878
- " super().__init__()\n",
879
- " self.tb_writer = tb_writer\n",
880
- " self.tokenizer = tokenizer\n",
881
- " self.metric = metric\n",
882
- " self.log_every_n_steps = log_every_n_steps\n",
883
- " self.predictions = None\n",
884
- " self.label_ids = None\n",
885
- "\n",
886
- " def compute_cer(self, pred_str, label_str):\n",
887
- " cer = 100 * self.metric.compute(predictions=pred_str, references=label_str)\n",
888
- " return cer\n",
889
- "\n",
890
- " def on_evaluate(self, args, state, control, metrics=None, **kwargs):\n",
891
- " if metrics is not None:\n",
892
- " for key, value in metrics.items():\n",
893
- " if key.startswith(\"eval_\"):\n",
894
- " self.tb_writer.add_scalar(key, value, state.global_step)\n",
895
- " print(f\"Step {state.global_step} - {key}: {value}\")\n",
896
- "\n",
897
- " if self.predictions is not None and self.label_ids is not None:\n",
898
- " pred_str = self.tokenizer.batch_decode(self.predictions, skip_special_tokens=True)\n",
899
- " label_str = self.tokenizer.batch_decode(self.label_ids, skip_special_tokens=True)\n",
900
- "\n",
901
- " sample_index = 1\n",
902
- " self.tb_writer.add_text(\"Prediction\", pred_str[sample_index], state.global_step)\n",
903
- " self.tb_writer.add_text(\"Label\", label_str[sample_index], state.global_step)\n",
904
- "\n",
905
- " print(f\"Step {state.global_step} - Sample Prediction: {pred_str[sample_index]}\")\n",
906
- " print(f\"Step {state.global_step} - Sample Label: {label_str[sample_index]}\")\n",
907
- "\n",
908
- " self.predictions = None\n",
909
- " self.label_ids = None\n",
910
- "\n",
911
- "def create_compute_metrics(callback_instance):\n",
912
- " def compute_metrics(eval_pred):\n",
913
- " pred_logits = eval_pred.predictions\n",
914
- " label_ids = eval_pred.label_ids\n",
915
- "\n",
916
- " if isinstance(pred_logits, tuple):\n",
917
- " pred_ids = pred_logits[0]\n",
918
- " else:\n",
919
- " pred_ids = pred_logits\n",
920
- " if pred_ids.ndim == 3:\n",
921
- " pred_ids = np.argmax(pred_ids, axis=-1)\n",
922
- "\n",
923
- " label_ids[label_ids == -100] = callback_instance.tokenizer.pad_token_id\n",
924
- " callback_instance.predictions = pred_ids\n",
925
- " callback_instance.label_ids = label_ids\n",
926
- "\n",
927
- " pred_str = callback_instance.tokenizer.batch_decode(pred_ids, skip_special_tokens=True)\n",
928
- " label_str = callback_instance.tokenizer.batch_decode(label_ids, skip_special_tokens=True)\n",
929
- " cer = 100 * callback_instance.metric.compute(predictions=pred_str, references=label_str)\n",
930
- "\n",
931
- " pred_flat = pred_ids.flatten()\n",
932
- " labels_flat = label_ids.flatten()\n",
933
- " mask = labels_flat != callback_instance.tokenizer.pad_token_id\n",
934
- "\n",
935
- " accuracy = accuracy_score(y_true=labels_flat[mask], y_pred=pred_flat[mask])\n",
936
- " precision = precision_score(y_true=labels_flat[mask], y_pred=pred_flat[mask], average='weighted', zero_division=0)\n",
937
- " recall = recall_score(y_true=labels_flat[mask], y_pred=pred_flat[mask], average='weighted', zero_division=0)\n",
938
- " f1 = f1_score(y_true=labels_flat[mask], y_pred=pred_flat[mask], average='weighted', zero_division=0)\n",
939
- "\n",
940
- " return {\n",
941
- " \"cer\": cer,\n",
942
- " \"accuracy\": accuracy,\n",
943
- " \"precision\": precision,\n",
944
- " \"recall\": recall,\n",
945
- " \"f1\": f1\n",
946
- " }\n",
947
- " return compute_metrics\n"
948
- ]
949
- },
950
- {
951
- "cell_type": "code",
952
- "execution_count": null,
953
- "metadata": {},
954
- "outputs": [],
955
- "source": [
956
- "def prepare_dataset(batch):\n",
957
- " audio = batch[\"audio\"]\n",
958
- " batch[\"input_features\"] = feature_extractor(audio[\"array\"], sampling_rate=audio[\"sampling_rate\"]).input_features[0]\n",
959
- " transcription = batch[\"sentence\"]\n",
960
- " batch[\"labels\"] = tokenizer(transcription).input_ids\n",
961
- " return batch\n",
962
- "\n",
963
- "def get_length_of_dataset(dataset):\n",
964
- " length = 0\n",
965
- " for item in dataset: length += (len(item[\"audio\"][\"array\"]) / item[\"audio\"][\"sampling_rate\"])\n",
966
- " return length//3600\n",
967
- "\n",
968
- "@dataclass\n",
969
- "class DataCollatorSpeechSeq2SeqWithPadding:\n",
970
- " processor: Any\n",
971
- " tokenizer: Any\n",
972
- " feature_extractor: Any\n",
973
- "\n",
974
- " def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:\n",
975
- " input_features = [{\"input_features\": feature[\"input_features\"]} for feature in features]\n",
976
- " batch = self.feature_extractor.pad(input_features, return_tensors=\"pt\")\n",
977
- " label_features = [{\"input_ids\": feature[\"labels\"]} for feature in features]\n",
978
- " labels_batch = self.tokenizer.pad(label_features, return_tensors=\"pt\")\n",
979
- " labels = labels_batch[\"input_ids\"].masked_fill(labels_batch.attention_mask.ne(1), -100)\n",
980
- " if (labels[:, 0] == self.tokenizer.bos_token_id).all().cpu().item():\n",
981
- " labels = labels[:, 1:]\n",
982
- " batch[\"labels\"] = labels\n",
983
- " return batch\n",
984
- "\n",
985
- "feature_extractor = WhisperFeatureExtractor.from_pretrained(pretrained_model_name_or_path=\"openai/whisper-small\", feature_size=128, n_fft=1024, hop_length=256, sampling_rate=16000)\n",
986
- "tokenizer = WhisperTokenizerFast.from_pretrained(pretrained_model_name_or_path=\"D:/newproject/new_tokenizer2\")\n",
987
- "processor = WhisperProcessor.from_pretrained(pretrained_model_name_or_path=\"openai/whisper-small\", language=\"Japanese\", task=\"transcribe\")\n",
988
- "\n",
989
- "def train():\n",
990
- "\n",
991
- " from datetime import datetime\n",
992
- " log_dir = os.path.join('./output/', datetime.now().strftime('%Y-%m-%d_%H'))\n",
993
- " os.makedirs(log_dir, exist_ok=True)\n",
994
- "\n",
995
- " name=\"echo\"\n",
996
- " model = Echo(config=config).to(device)\n",
997
- " model.apply_initialization()\n",
998
- " model.save_pretrained(log_dir)\n",
999
- " torch.save(obj=model.state_dict(), f=log_dir+name)\n",
1000
- " # model = Echo.from_pretrained(log_dir).to(device)\n",
1001
- "\n",
1002
- " dataset = load_dataset(path=\"audiofolder\", data_dir=\"D:/proj/datasets/gv\")[\"train\"].to_iterable_dataset(num_shards=20).filter(lambda x: bool(x['sentence']))\n",
1003
- " dataset = dataset.map(prepare_dataset).select_columns([\"input_features\", \"labels\"])\n",
1004
- " test, train = dataset.take(100), dataset.skip(100)\n",
1005
- " data_collator = DataCollatorSpeechSeq2SeqWithPadding(processor=processor, tokenizer=tokenizer, feature_extractor=feature_extractor)\n",
1006
- " \n",
1007
- " optimizer = transformers.Adafactor(params=model.parameters(), \n",
1008
- " clip_threshold=0.99, \n",
1009
- " weight_decay=0.005, \n",
1010
- " scale_parameter=True, \n",
1011
- " relative_step=True, \n",
1012
- " warmup_init=True, \n",
1013
- " lr=None)\n",
1014
- "\n",
1015
- " scheduler = transformers.optimization.AdafactorSchedule(optimizer=optimizer, initial_lr=2.25e-5)\n",
1016
- " loss_fn = torch.nn.CrossEntropyLoss(ignore_index=-100)\n",
1017
- "\n",
1018
- " metric = evaluate.load(path=\"cer\")\n",
1019
- " tb_writer = SummaryWriter(log_dir=log_dir)\n",
1020
- "\n",
1021
- " metrics_callback = MetricsCallback(tb_writer=tb_writer, tokenizer=tokenizer, metric=metric, log_every_n_steps=20)\n",
1022
- " compute_metrics = create_compute_metrics(metrics_callback)\n",
1023
- "\n",
1024
- " torch.backends.cuda.matmul.allow_tf32 = True\n",
1025
- " torch.backends.cudnn.allow_tf32 = True\n",
1026
- " torch.cuda.empty_cache()\n",
1027
- " torch.cuda.set_device(device=0)\n",
1028
- "\n",
1029
- " training_args = Seq2SeqTrainingArguments(\n",
1030
- " output_dir=\"./test\", \n",
1031
- " per_device_train_batch_size=1,\n",
1032
- " per_device_eval_batch_size=1,\n",
1033
- " gradient_accumulation_steps=1,\n",
1034
- " eval_accumulation_steps=1,\n",
1035
- " tf32=True,\n",
1036
- " bf16=True,\n",
1037
- " learning_rate=1e-5,\n",
1038
- " warmup_steps=500,\n",
1039
- " evaluation_strategy=\"steps\",\n",
1040
- " max_steps=10000,\n",
1041
- " save_steps=1000,\n",
1042
- " eval_steps=50,\n",
1043
- " logging_steps=5,\n",
1044
- " report_to=[\"tensorboard\"],\n",
1045
- " load_best_model_at_end=True,\n",
1046
- " metric_for_best_model=\"loss\",\n",
1047
- " greater_is_better=False,\n",
1048
- " push_to_hub=False,\n",
1049
- " optim=\"adafactor\",\n",
1050
- " weight_decay=0.0025,\n",
1051
- " disable_tqdm=False,\n",
1052
- " save_total_limit=2,\n",
1053
- " torch_empty_cache_steps=10,\n",
1054
- " )\n",
1055
- "\n",
1056
- " trainer = Seq2SeqTrainer(\n",
1057
- " args=training_args,\n",
1058
- " model=model,\n",
1059
- " train_dataset=train,\n",
1060
- " eval_dataset=test,\n",
1061
- " data_collator=data_collator,\n",
1062
- " compute_metrics=compute_metrics,\n",
1063
- " tokenizer=feature_extractor,\n",
1064
- " callbacks=[metrics_callback]\n",
1065
- " ) \n",
1066
- "\n",
1067
- " trainer.train(resume_from_checkpoint=False)\n",
1068
- "\n",
1069
- "\n",
1070
- "if __name__==\"__main__\":\n",
1071
- "\n",
1072
- " train()\n",
1073
- " import tensorboard\n",
1074
- "\n",
1075
- " # model.save_pretrained(\"./models/echo_train\")"
1076
- ]
1077
- },
1078
- {
1079
- "cell_type": "code",
1080
- "execution_count": null,
1081
- "metadata": {},
1082
- "outputs": [],
1083
- "source": [
1084
- "# torch.backends.cudnn.benchmark = True\n",
1085
- "# torch.autograd.set_detect_anomaly(False)\n",
1086
- "# torch.autograd.profiler.profile(False)\n",
1087
- "# torch.autograd.profiler.emit_nvtx(False)\n",
1088
- "# torch.autograd.profiler.record_function_enter_exit(False)\n",
1089
- "# torch.autograd.gradcheck(False)\n",
1090
- "# torch.autograd.gradgradcheck(False)\n",
1091
- "# torch.autograd.set_grad_enabled(True)\n",
1092
- "# torch.autograd.detect_anomaly(False)\n",
1093
- "# torch.autograd.profiler.profile(False)\n",
1094
- "# torch.autograd.profiler.emit_nvtx(False)\n",
1095
- "# torch.autograd.profiler.record_function_enter_exit(False)\n",
1096
- "# torch.autograd.gradcheck(False)\n",
1097
- "# torch.autograd.gradgradcheck(False)\n",
1098
- "# torch.autograd.set_grad_enabled(True)\n",
1099
- "# torch.autograd.detect_anomaly(False)\n",
1100
- "# torch.autograd.profiler.profile(False)\n",
1101
- "# torch.autograd.profiler.emit_nvtx(False)\n",
1102
- "# torch.autograd.profiler.record_function_enter_exit(False)\n",
1103
- "# torch.autograd.gradcheck(False)\n",
1104
- "# torch.autograd.gradgradcheck(False)\n",
1105
- "# torch.autograd.set_grad_enabled(True)\n",
1106
- "# torch.autograd.detect_anomaly(False)\n",
1107
- "# torch.autograd.profiler.profile(False)\n",
1108
- "# torch.autograd.profiler.emit_nvtx(False)\n",
1109
- "# torch.autograd.profiler.record_function_enter_exit(False)\n",
1110
- "# torch.autograd.gradcheck(False)\n",
1111
- "# torch.autograd.gradgradcheck(False)\n",
1112
- "# torch.autograd.set_grad_enabled(True)\n",
1113
- "# torch.autograd.detect_anomaly(False)\n",
1114
- "# torch.autograd.profiler.profile(False)\n",
1115
- "# torch.autograd.profiler.emit_nvtx(False)\n",
1116
- "# torch.autograd.profiler.record_function_enter_exit(False)\n",
1117
- "# torch.autograd.gradcheck(False)\n",
1118
- "# torch.autograd.gradgradcheck(False)\n",
1119
- "# torch.autograd.set_grad_enabled(True)\n",
1120
- "# torch.autograd.detect_anomaly(False)\n",
1121
- "# torch.autograd.profiler.profile(False)\n",
1122
- "# torch.autograd.profiler.emit_nvtx(False)\n",
1123
- "# torch.autograd.profiler.record_function_enter_exit(False)\n",
1124
- "# torch.autograd.gradcheck(False)\n",
1125
- "# torch.autograd.gradgradcheck(False)\n",
1126
- "# torch.autograd.set_grad_enabled(True)\n",
1127
- "# torch.autograd.detect_anomaly(False)\n",
1128
- "# torch.autograd.profiler.profile(False)\n",
1129
- "# torch.autograd.profiler.emit_nvtx(False)\n",
1130
- "# torch.autograd.profiler.record_function_enter_exit(False)\n",
1131
- "# torch.autograd.gradcheck(False)\n",
1132
- "# torch.autograd.gradgradcheck(False)\n",
1133
- "# torch.autograd.set_grad_enabled(True)\n",
1134
- "# torch.autograd.detect_anomaly(False)\n",
1135
- "# torch.autograd.profiler.profile(False)\n",
1136
- "# torch.autograd.profiler.emit_nvtx(False)\n",
1137
- "# torch.autograd.profiler.record_function_enter_exit(False)\n",
1138
- "# torch.autograd.gradcheck(False)\n",
1139
- "# torch.autograd.gradgradcheck(False)\n",
1140
- "# torch.autograd.set_grad_enabled(True)\n",
1141
- "# torch.autograd.detect_anomaly(False)"
1142
- ]
1143
- }
1144
- ],
1145
- "metadata": {
1146
- "kernelspec": {
1147
- "display_name": "Python 3",
1148
- "language": "python",
1149
- "name": "python3"
1150
- },
1151
- "language_info": {
1152
- "codemirror_mode": {
1153
- "name": "ipython",
1154
- "version": 3
1155
- },
1156
- "file_extension": ".py",
1157
- "mimetype": "text/x-python",
1158
- "name": "python",
1159
- "nbconvert_exporter": "python",
1160
- "pygments_lexer": "ipython3",
1161
- "version": "3.10.0"
1162
- }
1163
- },
1164
- "nbformat": 4,
1165
- "nbformat_minor": 2
1166
- }