Sigurdur commited on
Commit
de949c6
·
1 Parent(s): e3e15fa

Upload 18 files

Browse files
checkpoint-8000/config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "activation_function": "gelu_new",
3
+ "architectures": [
4
+ "GPT2LMHeadModel"
5
+ ],
6
+ "attn_pdrop": 0.1,
7
+ "bos_token_id": 0,
8
+ "embd_pdrop": 0.1,
9
+ "eos_token_id": 0,
10
+ "initializer_range": 0.02,
11
+ "layer_norm_epsilon": 1e-05,
12
+ "model_type": "gpt2",
13
+ "n_ctx": 512,
14
+ "n_embd": 768,
15
+ "n_head": 12,
16
+ "n_inner": null,
17
+ "n_layer": 12,
18
+ "n_positions": 1024,
19
+ "reorder_and_upcast_attn": false,
20
+ "resid_pdrop": 0.1,
21
+ "scale_attn_by_inverse_layer_idx": false,
22
+ "scale_attn_weights": true,
23
+ "summary_activation": null,
24
+ "summary_first_dropout": 0.1,
25
+ "summary_proj_to_labels": true,
26
+ "summary_type": "cls_index",
27
+ "summary_use_proj": true,
28
+ "torch_dtype": "float16",
29
+ "transformers_version": "4.30.1",
30
+ "use_cache": true,
31
+ "vocab_size": 30001
32
+ }
checkpoint-8000/generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 0,
4
+ "eos_token_id": 0,
5
+ "transformers_version": "4.30.1"
6
+ }
checkpoint-8000/global_step8000/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79da53d23f2a1e66c56aedab860c459b5bae561097515c3019653a6ad81f3f26
3
+ size 70851
checkpoint-8000/global_step8000/zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ae626b83076f05cef7ab8fcb9da4e299a6baac7005d3f7836a646b6487f5f9c
3
+ size 1306601854
checkpoint-8000/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step8000
checkpoint-8000/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6085421e01ff4e8143b1caf1ff91b56e2433deb73d0c11d3bb744462c690c4f
3
+ size 435567981
checkpoint-8000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c41e24d29934eedac549c9cb91a504c7bd471c21fa897b3b0bdcafe9d846541
3
+ size 14575
checkpoint-8000/trainer_state.json ADDED
@@ -0,0 +1,432 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 19.0145875,
5
+ "global_step": 8000,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.02,
12
+ "eval_loss": 2.681640625,
13
+ "eval_runtime": 8.3811,
14
+ "eval_samples_per_second": 109.293,
15
+ "eval_steps_per_second": 13.721,
16
+ "step": 200
17
+ },
18
+ {
19
+ "epoch": 0.04,
20
+ "eval_loss": 2.513671875,
21
+ "eval_runtime": 8.2785,
22
+ "eval_samples_per_second": 110.649,
23
+ "eval_steps_per_second": 13.891,
24
+ "step": 400
25
+ },
26
+ {
27
+ "epoch": 1.01,
28
+ "learning_rate": 5e-05,
29
+ "loss": 6.5037,
30
+ "step": 500
31
+ },
32
+ {
33
+ "epoch": 1.02,
34
+ "eval_loss": 2.380859375,
35
+ "eval_runtime": 8.3078,
36
+ "eval_samples_per_second": 110.258,
37
+ "eval_steps_per_second": 13.842,
38
+ "step": 600
39
+ },
40
+ {
41
+ "epoch": 1.04,
42
+ "eval_loss": 2.34375,
43
+ "eval_runtime": 8.3276,
44
+ "eval_samples_per_second": 109.996,
45
+ "eval_steps_per_second": 13.81,
46
+ "step": 800
47
+ },
48
+ {
49
+ "epoch": 2.02,
50
+ "learning_rate": 5e-05,
51
+ "loss": 4.8504,
52
+ "step": 1000
53
+ },
54
+ {
55
+ "epoch": 2.02,
56
+ "eval_loss": 2.275390625,
57
+ "eval_runtime": 8.3087,
58
+ "eval_samples_per_second": 110.247,
59
+ "eval_steps_per_second": 13.841,
60
+ "step": 1000
61
+ },
62
+ {
63
+ "epoch": 2.04,
64
+ "eval_loss": 2.333984375,
65
+ "eval_runtime": 8.287,
66
+ "eval_samples_per_second": 110.535,
67
+ "eval_steps_per_second": 13.877,
68
+ "step": 1200
69
+ },
70
+ {
71
+ "epoch": 3.02,
72
+ "eval_loss": 2.20703125,
73
+ "eval_runtime": 8.3018,
74
+ "eval_samples_per_second": 110.337,
75
+ "eval_steps_per_second": 13.852,
76
+ "step": 1400
77
+ },
78
+ {
79
+ "epoch": 3.03,
80
+ "learning_rate": 5e-05,
81
+ "loss": 4.3741,
82
+ "step": 1500
83
+ },
84
+ {
85
+ "epoch": 3.04,
86
+ "eval_loss": 2.248046875,
87
+ "eval_runtime": 8.2881,
88
+ "eval_samples_per_second": 110.521,
89
+ "eval_steps_per_second": 13.875,
90
+ "step": 1600
91
+ },
92
+ {
93
+ "epoch": 4.01,
94
+ "eval_loss": 2.205078125,
95
+ "eval_runtime": 8.2889,
96
+ "eval_samples_per_second": 110.51,
97
+ "eval_steps_per_second": 13.874,
98
+ "step": 1800
99
+ },
100
+ {
101
+ "epoch": 4.03,
102
+ "learning_rate": 5e-05,
103
+ "loss": 5.6907,
104
+ "step": 2000
105
+ },
106
+ {
107
+ "epoch": 4.03,
108
+ "eval_loss": 2.25,
109
+ "eval_runtime": 8.2748,
110
+ "eval_samples_per_second": 110.698,
111
+ "eval_steps_per_second": 13.898,
112
+ "step": 2000
113
+ },
114
+ {
115
+ "epoch": 5.01,
116
+ "eval_loss": 2.1640625,
117
+ "eval_runtime": 8.2832,
118
+ "eval_samples_per_second": 110.586,
119
+ "eval_steps_per_second": 13.884,
120
+ "step": 2200
121
+ },
122
+ {
123
+ "epoch": 5.03,
124
+ "eval_loss": 2.146484375,
125
+ "eval_runtime": 8.2965,
126
+ "eval_samples_per_second": 110.408,
127
+ "eval_steps_per_second": 13.861,
128
+ "step": 2400
129
+ },
130
+ {
131
+ "epoch": 6.0,
132
+ "learning_rate": 5e-05,
133
+ "loss": 4.6906,
134
+ "step": 2500
135
+ },
136
+ {
137
+ "epoch": 6.01,
138
+ "eval_loss": 2.13671875,
139
+ "eval_runtime": 8.2725,
140
+ "eval_samples_per_second": 110.729,
141
+ "eval_steps_per_second": 13.902,
142
+ "step": 2600
143
+ },
144
+ {
145
+ "epoch": 6.03,
146
+ "eval_loss": 2.140625,
147
+ "eval_runtime": 8.2842,
148
+ "eval_samples_per_second": 110.572,
149
+ "eval_steps_per_second": 13.882,
150
+ "step": 2800
151
+ },
152
+ {
153
+ "epoch": 7.01,
154
+ "learning_rate": 5e-05,
155
+ "loss": 3.4001,
156
+ "step": 3000
157
+ },
158
+ {
159
+ "epoch": 7.01,
160
+ "eval_loss": 2.146484375,
161
+ "eval_runtime": 8.2802,
162
+ "eval_samples_per_second": 110.625,
163
+ "eval_steps_per_second": 13.888,
164
+ "step": 3000
165
+ },
166
+ {
167
+ "epoch": 7.03,
168
+ "eval_loss": 2.126953125,
169
+ "eval_runtime": 8.3968,
170
+ "eval_samples_per_second": 109.089,
171
+ "eval_steps_per_second": 13.696,
172
+ "step": 3200
173
+ },
174
+ {
175
+ "epoch": 8.01,
176
+ "eval_loss": 2.181640625,
177
+ "eval_runtime": 8.3172,
178
+ "eval_samples_per_second": 110.133,
179
+ "eval_steps_per_second": 13.827,
180
+ "step": 3400
181
+ },
182
+ {
183
+ "epoch": 8.02,
184
+ "learning_rate": 5e-05,
185
+ "loss": 3.6049,
186
+ "step": 3500
187
+ },
188
+ {
189
+ "epoch": 8.03,
190
+ "eval_loss": 2.12890625,
191
+ "eval_runtime": 8.2765,
192
+ "eval_samples_per_second": 110.675,
193
+ "eval_steps_per_second": 13.895,
194
+ "step": 3600
195
+ },
196
+ {
197
+ "epoch": 9.01,
198
+ "eval_loss": 2.169921875,
199
+ "eval_runtime": 8.296,
200
+ "eval_samples_per_second": 110.414,
201
+ "eval_steps_per_second": 13.862,
202
+ "step": 3800
203
+ },
204
+ {
205
+ "epoch": 9.03,
206
+ "learning_rate": 5e-05,
207
+ "loss": 3.5502,
208
+ "step": 4000
209
+ },
210
+ {
211
+ "epoch": 9.03,
212
+ "eval_loss": 2.162109375,
213
+ "eval_runtime": 8.2755,
214
+ "eval_samples_per_second": 110.688,
215
+ "eval_steps_per_second": 13.896,
216
+ "step": 4000
217
+ },
218
+ {
219
+ "epoch": 10.01,
220
+ "eval_loss": 2.201171875,
221
+ "eval_runtime": 8.2728,
222
+ "eval_samples_per_second": 110.724,
223
+ "eval_steps_per_second": 13.901,
224
+ "step": 4200
225
+ },
226
+ {
227
+ "epoch": 10.03,
228
+ "eval_loss": 2.212890625,
229
+ "eval_runtime": 8.2776,
230
+ "eval_samples_per_second": 110.66,
231
+ "eval_steps_per_second": 13.893,
232
+ "step": 4400
233
+ },
234
+ {
235
+ "epoch": 10.04,
236
+ "learning_rate": 5e-05,
237
+ "loss": 4.1514,
238
+ "step": 4500
239
+ },
240
+ {
241
+ "epoch": 11.01,
242
+ "eval_loss": 2.279296875,
243
+ "eval_runtime": 8.2705,
244
+ "eval_samples_per_second": 110.754,
245
+ "eval_steps_per_second": 13.905,
246
+ "step": 4600
247
+ },
248
+ {
249
+ "epoch": 11.03,
250
+ "eval_loss": 2.212890625,
251
+ "eval_runtime": 8.303,
252
+ "eval_samples_per_second": 110.321,
253
+ "eval_steps_per_second": 13.85,
254
+ "step": 4800
255
+ },
256
+ {
257
+ "epoch": 12.0,
258
+ "learning_rate": 5e-05,
259
+ "loss": 3.2494,
260
+ "step": 5000
261
+ },
262
+ {
263
+ "epoch": 12.0,
264
+ "eval_loss": 2.263671875,
265
+ "eval_runtime": 8.2843,
266
+ "eval_samples_per_second": 110.57,
267
+ "eval_steps_per_second": 13.882,
268
+ "step": 5000
269
+ },
270
+ {
271
+ "epoch": 12.02,
272
+ "eval_loss": 2.267578125,
273
+ "eval_runtime": 8.2766,
274
+ "eval_samples_per_second": 110.674,
275
+ "eval_steps_per_second": 13.895,
276
+ "step": 5200
277
+ },
278
+ {
279
+ "epoch": 13.0,
280
+ "eval_loss": 2.31640625,
281
+ "eval_runtime": 8.3166,
282
+ "eval_samples_per_second": 110.142,
283
+ "eval_steps_per_second": 13.828,
284
+ "step": 5400
285
+ },
286
+ {
287
+ "epoch": 13.01,
288
+ "learning_rate": 5e-05,
289
+ "loss": 2.7284,
290
+ "step": 5500
291
+ },
292
+ {
293
+ "epoch": 13.02,
294
+ "eval_loss": 2.314453125,
295
+ "eval_runtime": 8.2867,
296
+ "eval_samples_per_second": 110.539,
297
+ "eval_steps_per_second": 13.878,
298
+ "step": 5600
299
+ },
300
+ {
301
+ "epoch": 14.0,
302
+ "eval_loss": 2.3203125,
303
+ "eval_runtime": 8.2686,
304
+ "eval_samples_per_second": 110.781,
305
+ "eval_steps_per_second": 13.908,
306
+ "step": 5800
307
+ },
308
+ {
309
+ "epoch": 14.02,
310
+ "learning_rate": 5e-05,
311
+ "loss": 2.5881,
312
+ "step": 6000
313
+ },
314
+ {
315
+ "epoch": 14.02,
316
+ "eval_loss": 2.375,
317
+ "eval_runtime": 8.2905,
318
+ "eval_samples_per_second": 110.488,
319
+ "eval_steps_per_second": 13.871,
320
+ "step": 6000
321
+ },
322
+ {
323
+ "epoch": 14.04,
324
+ "eval_loss": 2.337890625,
325
+ "eval_runtime": 8.2824,
326
+ "eval_samples_per_second": 110.596,
327
+ "eval_steps_per_second": 13.885,
328
+ "step": 6200
329
+ },
330
+ {
331
+ "epoch": 15.02,
332
+ "eval_loss": 2.3828125,
333
+ "eval_runtime": 8.302,
334
+ "eval_samples_per_second": 110.335,
335
+ "eval_steps_per_second": 13.852,
336
+ "step": 6400
337
+ },
338
+ {
339
+ "epoch": 15.03,
340
+ "learning_rate": 5e-05,
341
+ "loss": 2.8623,
342
+ "step": 6500
343
+ },
344
+ {
345
+ "epoch": 15.04,
346
+ "eval_loss": 2.390625,
347
+ "eval_runtime": 8.2657,
348
+ "eval_samples_per_second": 110.819,
349
+ "eval_steps_per_second": 13.913,
350
+ "step": 6600
351
+ },
352
+ {
353
+ "epoch": 16.02,
354
+ "eval_loss": 2.466796875,
355
+ "eval_runtime": 8.2805,
356
+ "eval_samples_per_second": 110.622,
357
+ "eval_steps_per_second": 13.888,
358
+ "step": 6800
359
+ },
360
+ {
361
+ "epoch": 16.04,
362
+ "learning_rate": 5e-05,
363
+ "loss": 3.9491,
364
+ "step": 7000
365
+ },
366
+ {
367
+ "epoch": 16.04,
368
+ "eval_loss": 2.49609375,
369
+ "eval_runtime": 8.2778,
370
+ "eval_samples_per_second": 110.658,
371
+ "eval_steps_per_second": 13.893,
372
+ "step": 7000
373
+ },
374
+ {
375
+ "epoch": 17.02,
376
+ "eval_loss": 2.498046875,
377
+ "eval_runtime": 8.2955,
378
+ "eval_samples_per_second": 110.422,
379
+ "eval_steps_per_second": 13.863,
380
+ "step": 7200
381
+ },
382
+ {
383
+ "epoch": 17.04,
384
+ "eval_loss": 2.654296875,
385
+ "eval_runtime": 8.2783,
386
+ "eval_samples_per_second": 110.651,
387
+ "eval_steps_per_second": 13.892,
388
+ "step": 7400
389
+ },
390
+ {
391
+ "epoch": 18.01,
392
+ "learning_rate": 5e-05,
393
+ "loss": 2.3629,
394
+ "step": 7500
395
+ },
396
+ {
397
+ "epoch": 18.02,
398
+ "eval_loss": 2.595703125,
399
+ "eval_runtime": 8.301,
400
+ "eval_samples_per_second": 110.348,
401
+ "eval_steps_per_second": 13.854,
402
+ "step": 7600
403
+ },
404
+ {
405
+ "epoch": 18.04,
406
+ "eval_loss": 2.64453125,
407
+ "eval_runtime": 8.2827,
408
+ "eval_samples_per_second": 110.592,
409
+ "eval_steps_per_second": 13.884,
410
+ "step": 7800
411
+ },
412
+ {
413
+ "epoch": 19.01,
414
+ "learning_rate": 5e-05,
415
+ "loss": 1.977,
416
+ "step": 8000
417
+ },
418
+ {
419
+ "epoch": 19.01,
420
+ "eval_loss": 2.701171875,
421
+ "eval_runtime": 8.2814,
422
+ "eval_samples_per_second": 110.609,
423
+ "eval_steps_per_second": 13.886,
424
+ "step": 8000
425
+ }
426
+ ],
427
+ "max_steps": 10000,
428
+ "num_train_epochs": 9223372036854775807,
429
+ "total_flos": 47707692466176.0,
430
+ "trial_name": null,
431
+ "trial_params": null
432
+ }
checkpoint-8000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:238e8e34f702906271fba5ec132de4bf0352ba069e3744e4c473190d6ab0f561
3
+ size 6011
checkpoint-8000/zero_to_fp32.py ADDED
@@ -0,0 +1,587 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
252
+ param_shapes = zero_model_states[0].param_shapes
253
+
254
+ # Reconstruction protocol:
255
+ #
256
+ # XXX: document this
257
+
258
+ if debug:
259
+ for i in range(world_size):
260
+ for j in range(len(fp32_flat_groups[0])):
261
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
262
+
263
+ # XXX: memory usage doubles here (zero2)
264
+ num_param_groups = len(fp32_flat_groups[0])
265
+ merged_single_partition_of_fp32_groups = []
266
+ for i in range(num_param_groups):
267
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
268
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
269
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
270
+ avail_numel = sum(
271
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
272
+
273
+ if debug:
274
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
275
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
276
+ # not asserting if there is a mismatch due to possible padding
277
+ print(f"Have {avail_numel} numels to process.")
278
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
279
+
280
+ # params
281
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
282
+ # out-of-core computing solution
283
+ total_numel = 0
284
+ total_params = 0
285
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
286
+ offset = 0
287
+ avail_numel = full_single_fp32_vector.numel()
288
+ for name, shape in shapes.items():
289
+
290
+ unpartitioned_numel = shape.numel()
291
+ total_numel += unpartitioned_numel
292
+ total_params += 1
293
+
294
+ if debug:
295
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
296
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
297
+ offset += unpartitioned_numel
298
+
299
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
300
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
301
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
302
+ # live optimizer object, so we are checking that the numbers are within the right range
303
+ align_to = 2 * world_size
304
+
305
+ def zero2_align(x):
306
+ return align_to * math.ceil(x / align_to)
307
+
308
+ if debug:
309
+ print(f"original offset={offset}, avail_numel={avail_numel}")
310
+
311
+ offset = zero2_align(offset)
312
+ avail_numel = zero2_align(avail_numel)
313
+
314
+ if debug:
315
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
316
+
317
+ # Sanity check
318
+ if offset != avail_numel:
319
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
320
+
321
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
322
+
323
+
324
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
325
+ state_dict = OrderedDict()
326
+
327
+ # buffers
328
+ buffers = zero_model_states[0].buffers
329
+ state_dict.update(buffers)
330
+ if debug:
331
+ print(f"added {len(buffers)} buffers")
332
+
333
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
334
+
335
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
336
+
337
+ # recover shared parameters
338
+ for pair in zero_model_states[0].shared_params:
339
+ if pair[1] in state_dict:
340
+ state_dict[pair[0]] = state_dict[pair[1]]
341
+
342
+ return state_dict
343
+
344
+
345
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
346
+ remainder = unpartitioned_numel % world_size
347
+ padding_numel = (world_size - remainder) if remainder else 0
348
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
349
+ return partitioned_numel, padding_numel
350
+
351
+
352
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
353
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
354
+ return
355
+
356
+ if debug:
357
+ for i in range(world_size):
358
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
359
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
360
+
361
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
362
+ wanted_params = len(frozen_param_shapes)
363
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
364
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
365
+ print(f'Frozen params: Have {avail_numel} numels to process.')
366
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
367
+
368
+ total_params = 0
369
+ total_numel = 0
370
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
371
+ total_params += 1
372
+ unpartitioned_numel = shape.numel()
373
+ total_numel += unpartitioned_numel
374
+
375
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
376
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
377
+
378
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
379
+
380
+ if debug:
381
+ print(
382
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
383
+ )
384
+
385
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
386
+
387
+
388
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
389
+ param_shapes = zero_model_states[0].param_shapes
390
+ avail_numel = fp32_flat_groups[0].numel() * world_size
391
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
392
+ # param, re-consolidating each param, while dealing with padding if any
393
+
394
+ # merge list of dicts, preserving order
395
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
396
+
397
+ if debug:
398
+ for i in range(world_size):
399
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
400
+
401
+ wanted_params = len(param_shapes)
402
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
403
+ # not asserting if there is a mismatch due to possible padding
404
+ avail_numel = fp32_flat_groups[0].numel() * world_size
405
+ print(f"Trainable params: Have {avail_numel} numels to process.")
406
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
407
+
408
+ # params
409
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
410
+ # out-of-core computing solution
411
+ offset = 0
412
+ total_numel = 0
413
+ total_params = 0
414
+ for name, shape in param_shapes.items():
415
+
416
+ unpartitioned_numel = shape.numel()
417
+ total_numel += unpartitioned_numel
418
+ total_params += 1
419
+
420
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
421
+
422
+ if debug:
423
+ print(
424
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
425
+ )
426
+
427
+ # XXX: memory usage doubles here
428
+ state_dict[name] = torch.cat(
429
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
430
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
431
+ offset += partitioned_numel
432
+
433
+ offset *= world_size
434
+
435
+ # Sanity check
436
+ if offset != avail_numel:
437
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
438
+
439
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
440
+
441
+
442
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
443
+ state_dict = OrderedDict()
444
+
445
+ # buffers
446
+ buffers = zero_model_states[0].buffers
447
+ state_dict.update(buffers)
448
+ if debug:
449
+ print(f"added {len(buffers)} buffers")
450
+
451
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
452
+
453
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
454
+
455
+ # recover shared parameters
456
+ for pair in zero_model_states[0].shared_params:
457
+ if pair[1] in state_dict:
458
+ state_dict[pair[0]] = state_dict[pair[1]]
459
+
460
+ return state_dict
461
+
462
+
463
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
464
+ """
465
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
466
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
467
+ via a model hub.
468
+
469
+ Args:
470
+ - ``checkpoint_dir``: path to the desired checkpoint folder
471
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
472
+
473
+ Returns:
474
+ - pytorch ``state_dict``
475
+
476
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
477
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
478
+ the checkpoint.
479
+
480
+ A typical usage might be ::
481
+
482
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
483
+ # do the training and checkpoint saving
484
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
485
+ model = model.cpu() # move to cpu
486
+ model.load_state_dict(state_dict)
487
+ # submit to model hub or save the model to share with others
488
+
489
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
490
+ application. i.e. you will need to re-initialize the deepspeed engine, since
491
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
492
+
493
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
494
+
495
+ """
496
+ if tag is None:
497
+ latest_path = os.path.join(checkpoint_dir, 'latest')
498
+ if os.path.isfile(latest_path):
499
+ with open(latest_path, 'r') as fd:
500
+ tag = fd.read().strip()
501
+ else:
502
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
503
+
504
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
505
+
506
+ if not os.path.isdir(ds_checkpoint_dir):
507
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
508
+
509
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
510
+
511
+
512
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
513
+ """
514
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
515
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
516
+
517
+ Args:
518
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
519
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
520
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
521
+ """
522
+
523
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
524
+ print(f"Saving fp32 state dict to {output_file}")
525
+ torch.save(state_dict, output_file)
526
+
527
+
528
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
529
+ """
530
+ 1. Put the provided model to cpu
531
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
532
+ 3. Load it into the provided model
533
+
534
+ Args:
535
+ - ``model``: the model object to update
536
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
537
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
538
+
539
+ Returns:
540
+ - ``model`: modified model
541
+
542
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
543
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
544
+ conveniently placed for you in the checkpoint folder.
545
+
546
+ A typical usage might be ::
547
+
548
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
549
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
550
+ # submit to model hub or save the model to share with others
551
+
552
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
553
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
554
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
555
+
556
+ """
557
+ logger.info(f"Extracting fp32 weights")
558
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
559
+
560
+ logger.info(f"Overwriting model with fp32 weights")
561
+ model = model.cpu()
562
+ model.load_state_dict(state_dict, strict=False)
563
+
564
+ return model
565
+
566
+
567
+ if __name__ == "__main__":
568
+
569
+ parser = argparse.ArgumentParser()
570
+ parser.add_argument("checkpoint_dir",
571
+ type=str,
572
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
573
+ parser.add_argument(
574
+ "output_file",
575
+ type=str,
576
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
577
+ parser.add_argument("-t",
578
+ "--tag",
579
+ type=str,
580
+ default=None,
581
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
582
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
583
+ args = parser.parse_args()
584
+
585
+ debug = args.debug
586
+
587
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "activation_function": "gelu_new",
3
+ "architectures": [
4
+ "GPT2LMHeadModel"
5
+ ],
6
+ "attn_pdrop": 0.1,
7
+ "bos_token_id": 0,
8
+ "embd_pdrop": 0.1,
9
+ "eos_token_id": 0,
10
+ "initializer_range": 0.02,
11
+ "layer_norm_epsilon": 1e-05,
12
+ "model_type": "gpt2",
13
+ "n_ctx": 512,
14
+ "n_embd": 768,
15
+ "n_head": 12,
16
+ "n_inner": null,
17
+ "n_layer": 12,
18
+ "n_positions": 1024,
19
+ "reorder_and_upcast_attn": false,
20
+ "resid_pdrop": 0.1,
21
+ "scale_attn_by_inverse_layer_idx": false,
22
+ "scale_attn_weights": true,
23
+ "summary_activation": null,
24
+ "summary_first_dropout": 0.1,
25
+ "summary_proj_to_labels": true,
26
+ "summary_type": "cls_index",
27
+ "summary_use_proj": true,
28
+ "torch_dtype": "float16",
29
+ "transformers_version": "4.30.1",
30
+ "use_cache": true,
31
+ "vocab_size": 30001
32
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 0,
4
+ "eos_token_id": 0,
5
+ "transformers_version": "4.30.1"
6
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step8000
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6085421e01ff4e8143b1caf1ff91b56e2433deb73d0c11d3bb744462c690c4f
3
+ size 435567981
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c41e24d29934eedac549c9cb91a504c7bd471c21fa897b3b0bdcafe9d846541
3
+ size 14575
trainer_state.json ADDED
@@ -0,0 +1,432 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 19.0145875,
5
+ "global_step": 8000,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.02,
12
+ "eval_loss": 2.681640625,
13
+ "eval_runtime": 8.3811,
14
+ "eval_samples_per_second": 109.293,
15
+ "eval_steps_per_second": 13.721,
16
+ "step": 200
17
+ },
18
+ {
19
+ "epoch": 0.04,
20
+ "eval_loss": 2.513671875,
21
+ "eval_runtime": 8.2785,
22
+ "eval_samples_per_second": 110.649,
23
+ "eval_steps_per_second": 13.891,
24
+ "step": 400
25
+ },
26
+ {
27
+ "epoch": 1.01,
28
+ "learning_rate": 5e-05,
29
+ "loss": 6.5037,
30
+ "step": 500
31
+ },
32
+ {
33
+ "epoch": 1.02,
34
+ "eval_loss": 2.380859375,
35
+ "eval_runtime": 8.3078,
36
+ "eval_samples_per_second": 110.258,
37
+ "eval_steps_per_second": 13.842,
38
+ "step": 600
39
+ },
40
+ {
41
+ "epoch": 1.04,
42
+ "eval_loss": 2.34375,
43
+ "eval_runtime": 8.3276,
44
+ "eval_samples_per_second": 109.996,
45
+ "eval_steps_per_second": 13.81,
46
+ "step": 800
47
+ },
48
+ {
49
+ "epoch": 2.02,
50
+ "learning_rate": 5e-05,
51
+ "loss": 4.8504,
52
+ "step": 1000
53
+ },
54
+ {
55
+ "epoch": 2.02,
56
+ "eval_loss": 2.275390625,
57
+ "eval_runtime": 8.3087,
58
+ "eval_samples_per_second": 110.247,
59
+ "eval_steps_per_second": 13.841,
60
+ "step": 1000
61
+ },
62
+ {
63
+ "epoch": 2.04,
64
+ "eval_loss": 2.333984375,
65
+ "eval_runtime": 8.287,
66
+ "eval_samples_per_second": 110.535,
67
+ "eval_steps_per_second": 13.877,
68
+ "step": 1200
69
+ },
70
+ {
71
+ "epoch": 3.02,
72
+ "eval_loss": 2.20703125,
73
+ "eval_runtime": 8.3018,
74
+ "eval_samples_per_second": 110.337,
75
+ "eval_steps_per_second": 13.852,
76
+ "step": 1400
77
+ },
78
+ {
79
+ "epoch": 3.03,
80
+ "learning_rate": 5e-05,
81
+ "loss": 4.3741,
82
+ "step": 1500
83
+ },
84
+ {
85
+ "epoch": 3.04,
86
+ "eval_loss": 2.248046875,
87
+ "eval_runtime": 8.2881,
88
+ "eval_samples_per_second": 110.521,
89
+ "eval_steps_per_second": 13.875,
90
+ "step": 1600
91
+ },
92
+ {
93
+ "epoch": 4.01,
94
+ "eval_loss": 2.205078125,
95
+ "eval_runtime": 8.2889,
96
+ "eval_samples_per_second": 110.51,
97
+ "eval_steps_per_second": 13.874,
98
+ "step": 1800
99
+ },
100
+ {
101
+ "epoch": 4.03,
102
+ "learning_rate": 5e-05,
103
+ "loss": 5.6907,
104
+ "step": 2000
105
+ },
106
+ {
107
+ "epoch": 4.03,
108
+ "eval_loss": 2.25,
109
+ "eval_runtime": 8.2748,
110
+ "eval_samples_per_second": 110.698,
111
+ "eval_steps_per_second": 13.898,
112
+ "step": 2000
113
+ },
114
+ {
115
+ "epoch": 5.01,
116
+ "eval_loss": 2.1640625,
117
+ "eval_runtime": 8.2832,
118
+ "eval_samples_per_second": 110.586,
119
+ "eval_steps_per_second": 13.884,
120
+ "step": 2200
121
+ },
122
+ {
123
+ "epoch": 5.03,
124
+ "eval_loss": 2.146484375,
125
+ "eval_runtime": 8.2965,
126
+ "eval_samples_per_second": 110.408,
127
+ "eval_steps_per_second": 13.861,
128
+ "step": 2400
129
+ },
130
+ {
131
+ "epoch": 6.0,
132
+ "learning_rate": 5e-05,
133
+ "loss": 4.6906,
134
+ "step": 2500
135
+ },
136
+ {
137
+ "epoch": 6.01,
138
+ "eval_loss": 2.13671875,
139
+ "eval_runtime": 8.2725,
140
+ "eval_samples_per_second": 110.729,
141
+ "eval_steps_per_second": 13.902,
142
+ "step": 2600
143
+ },
144
+ {
145
+ "epoch": 6.03,
146
+ "eval_loss": 2.140625,
147
+ "eval_runtime": 8.2842,
148
+ "eval_samples_per_second": 110.572,
149
+ "eval_steps_per_second": 13.882,
150
+ "step": 2800
151
+ },
152
+ {
153
+ "epoch": 7.01,
154
+ "learning_rate": 5e-05,
155
+ "loss": 3.4001,
156
+ "step": 3000
157
+ },
158
+ {
159
+ "epoch": 7.01,
160
+ "eval_loss": 2.146484375,
161
+ "eval_runtime": 8.2802,
162
+ "eval_samples_per_second": 110.625,
163
+ "eval_steps_per_second": 13.888,
164
+ "step": 3000
165
+ },
166
+ {
167
+ "epoch": 7.03,
168
+ "eval_loss": 2.126953125,
169
+ "eval_runtime": 8.3968,
170
+ "eval_samples_per_second": 109.089,
171
+ "eval_steps_per_second": 13.696,
172
+ "step": 3200
173
+ },
174
+ {
175
+ "epoch": 8.01,
176
+ "eval_loss": 2.181640625,
177
+ "eval_runtime": 8.3172,
178
+ "eval_samples_per_second": 110.133,
179
+ "eval_steps_per_second": 13.827,
180
+ "step": 3400
181
+ },
182
+ {
183
+ "epoch": 8.02,
184
+ "learning_rate": 5e-05,
185
+ "loss": 3.6049,
186
+ "step": 3500
187
+ },
188
+ {
189
+ "epoch": 8.03,
190
+ "eval_loss": 2.12890625,
191
+ "eval_runtime": 8.2765,
192
+ "eval_samples_per_second": 110.675,
193
+ "eval_steps_per_second": 13.895,
194
+ "step": 3600
195
+ },
196
+ {
197
+ "epoch": 9.01,
198
+ "eval_loss": 2.169921875,
199
+ "eval_runtime": 8.296,
200
+ "eval_samples_per_second": 110.414,
201
+ "eval_steps_per_second": 13.862,
202
+ "step": 3800
203
+ },
204
+ {
205
+ "epoch": 9.03,
206
+ "learning_rate": 5e-05,
207
+ "loss": 3.5502,
208
+ "step": 4000
209
+ },
210
+ {
211
+ "epoch": 9.03,
212
+ "eval_loss": 2.162109375,
213
+ "eval_runtime": 8.2755,
214
+ "eval_samples_per_second": 110.688,
215
+ "eval_steps_per_second": 13.896,
216
+ "step": 4000
217
+ },
218
+ {
219
+ "epoch": 10.01,
220
+ "eval_loss": 2.201171875,
221
+ "eval_runtime": 8.2728,
222
+ "eval_samples_per_second": 110.724,
223
+ "eval_steps_per_second": 13.901,
224
+ "step": 4200
225
+ },
226
+ {
227
+ "epoch": 10.03,
228
+ "eval_loss": 2.212890625,
229
+ "eval_runtime": 8.2776,
230
+ "eval_samples_per_second": 110.66,
231
+ "eval_steps_per_second": 13.893,
232
+ "step": 4400
233
+ },
234
+ {
235
+ "epoch": 10.04,
236
+ "learning_rate": 5e-05,
237
+ "loss": 4.1514,
238
+ "step": 4500
239
+ },
240
+ {
241
+ "epoch": 11.01,
242
+ "eval_loss": 2.279296875,
243
+ "eval_runtime": 8.2705,
244
+ "eval_samples_per_second": 110.754,
245
+ "eval_steps_per_second": 13.905,
246
+ "step": 4600
247
+ },
248
+ {
249
+ "epoch": 11.03,
250
+ "eval_loss": 2.212890625,
251
+ "eval_runtime": 8.303,
252
+ "eval_samples_per_second": 110.321,
253
+ "eval_steps_per_second": 13.85,
254
+ "step": 4800
255
+ },
256
+ {
257
+ "epoch": 12.0,
258
+ "learning_rate": 5e-05,
259
+ "loss": 3.2494,
260
+ "step": 5000
261
+ },
262
+ {
263
+ "epoch": 12.0,
264
+ "eval_loss": 2.263671875,
265
+ "eval_runtime": 8.2843,
266
+ "eval_samples_per_second": 110.57,
267
+ "eval_steps_per_second": 13.882,
268
+ "step": 5000
269
+ },
270
+ {
271
+ "epoch": 12.02,
272
+ "eval_loss": 2.267578125,
273
+ "eval_runtime": 8.2766,
274
+ "eval_samples_per_second": 110.674,
275
+ "eval_steps_per_second": 13.895,
276
+ "step": 5200
277
+ },
278
+ {
279
+ "epoch": 13.0,
280
+ "eval_loss": 2.31640625,
281
+ "eval_runtime": 8.3166,
282
+ "eval_samples_per_second": 110.142,
283
+ "eval_steps_per_second": 13.828,
284
+ "step": 5400
285
+ },
286
+ {
287
+ "epoch": 13.01,
288
+ "learning_rate": 5e-05,
289
+ "loss": 2.7284,
290
+ "step": 5500
291
+ },
292
+ {
293
+ "epoch": 13.02,
294
+ "eval_loss": 2.314453125,
295
+ "eval_runtime": 8.2867,
296
+ "eval_samples_per_second": 110.539,
297
+ "eval_steps_per_second": 13.878,
298
+ "step": 5600
299
+ },
300
+ {
301
+ "epoch": 14.0,
302
+ "eval_loss": 2.3203125,
303
+ "eval_runtime": 8.2686,
304
+ "eval_samples_per_second": 110.781,
305
+ "eval_steps_per_second": 13.908,
306
+ "step": 5800
307
+ },
308
+ {
309
+ "epoch": 14.02,
310
+ "learning_rate": 5e-05,
311
+ "loss": 2.5881,
312
+ "step": 6000
313
+ },
314
+ {
315
+ "epoch": 14.02,
316
+ "eval_loss": 2.375,
317
+ "eval_runtime": 8.2905,
318
+ "eval_samples_per_second": 110.488,
319
+ "eval_steps_per_second": 13.871,
320
+ "step": 6000
321
+ },
322
+ {
323
+ "epoch": 14.04,
324
+ "eval_loss": 2.337890625,
325
+ "eval_runtime": 8.2824,
326
+ "eval_samples_per_second": 110.596,
327
+ "eval_steps_per_second": 13.885,
328
+ "step": 6200
329
+ },
330
+ {
331
+ "epoch": 15.02,
332
+ "eval_loss": 2.3828125,
333
+ "eval_runtime": 8.302,
334
+ "eval_samples_per_second": 110.335,
335
+ "eval_steps_per_second": 13.852,
336
+ "step": 6400
337
+ },
338
+ {
339
+ "epoch": 15.03,
340
+ "learning_rate": 5e-05,
341
+ "loss": 2.8623,
342
+ "step": 6500
343
+ },
344
+ {
345
+ "epoch": 15.04,
346
+ "eval_loss": 2.390625,
347
+ "eval_runtime": 8.2657,
348
+ "eval_samples_per_second": 110.819,
349
+ "eval_steps_per_second": 13.913,
350
+ "step": 6600
351
+ },
352
+ {
353
+ "epoch": 16.02,
354
+ "eval_loss": 2.466796875,
355
+ "eval_runtime": 8.2805,
356
+ "eval_samples_per_second": 110.622,
357
+ "eval_steps_per_second": 13.888,
358
+ "step": 6800
359
+ },
360
+ {
361
+ "epoch": 16.04,
362
+ "learning_rate": 5e-05,
363
+ "loss": 3.9491,
364
+ "step": 7000
365
+ },
366
+ {
367
+ "epoch": 16.04,
368
+ "eval_loss": 2.49609375,
369
+ "eval_runtime": 8.2778,
370
+ "eval_samples_per_second": 110.658,
371
+ "eval_steps_per_second": 13.893,
372
+ "step": 7000
373
+ },
374
+ {
375
+ "epoch": 17.02,
376
+ "eval_loss": 2.498046875,
377
+ "eval_runtime": 8.2955,
378
+ "eval_samples_per_second": 110.422,
379
+ "eval_steps_per_second": 13.863,
380
+ "step": 7200
381
+ },
382
+ {
383
+ "epoch": 17.04,
384
+ "eval_loss": 2.654296875,
385
+ "eval_runtime": 8.2783,
386
+ "eval_samples_per_second": 110.651,
387
+ "eval_steps_per_second": 13.892,
388
+ "step": 7400
389
+ },
390
+ {
391
+ "epoch": 18.01,
392
+ "learning_rate": 5e-05,
393
+ "loss": 2.3629,
394
+ "step": 7500
395
+ },
396
+ {
397
+ "epoch": 18.02,
398
+ "eval_loss": 2.595703125,
399
+ "eval_runtime": 8.301,
400
+ "eval_samples_per_second": 110.348,
401
+ "eval_steps_per_second": 13.854,
402
+ "step": 7600
403
+ },
404
+ {
405
+ "epoch": 18.04,
406
+ "eval_loss": 2.64453125,
407
+ "eval_runtime": 8.2827,
408
+ "eval_samples_per_second": 110.592,
409
+ "eval_steps_per_second": 13.884,
410
+ "step": 7800
411
+ },
412
+ {
413
+ "epoch": 19.01,
414
+ "learning_rate": 5e-05,
415
+ "loss": 1.977,
416
+ "step": 8000
417
+ },
418
+ {
419
+ "epoch": 19.01,
420
+ "eval_loss": 2.701171875,
421
+ "eval_runtime": 8.2814,
422
+ "eval_samples_per_second": 110.609,
423
+ "eval_steps_per_second": 13.886,
424
+ "step": 8000
425
+ }
426
+ ],
427
+ "max_steps": 10000,
428
+ "num_train_epochs": 9223372036854775807,
429
+ "total_flos": 47707692466176.0,
430
+ "trial_name": null,
431
+ "trial_params": null
432
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:238e8e34f702906271fba5ec132de4bf0352ba069e3744e4c473190d6ab0f561
3
+ size 6011
zero_to_fp32.py ADDED
@@ -0,0 +1,587 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
252
+ param_shapes = zero_model_states[0].param_shapes
253
+
254
+ # Reconstruction protocol:
255
+ #
256
+ # XXX: document this
257
+
258
+ if debug:
259
+ for i in range(world_size):
260
+ for j in range(len(fp32_flat_groups[0])):
261
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
262
+
263
+ # XXX: memory usage doubles here (zero2)
264
+ num_param_groups = len(fp32_flat_groups[0])
265
+ merged_single_partition_of_fp32_groups = []
266
+ for i in range(num_param_groups):
267
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
268
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
269
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
270
+ avail_numel = sum(
271
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
272
+
273
+ if debug:
274
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
275
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
276
+ # not asserting if there is a mismatch due to possible padding
277
+ print(f"Have {avail_numel} numels to process.")
278
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
279
+
280
+ # params
281
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
282
+ # out-of-core computing solution
283
+ total_numel = 0
284
+ total_params = 0
285
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
286
+ offset = 0
287
+ avail_numel = full_single_fp32_vector.numel()
288
+ for name, shape in shapes.items():
289
+
290
+ unpartitioned_numel = shape.numel()
291
+ total_numel += unpartitioned_numel
292
+ total_params += 1
293
+
294
+ if debug:
295
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
296
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
297
+ offset += unpartitioned_numel
298
+
299
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
300
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
301
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
302
+ # live optimizer object, so we are checking that the numbers are within the right range
303
+ align_to = 2 * world_size
304
+
305
+ def zero2_align(x):
306
+ return align_to * math.ceil(x / align_to)
307
+
308
+ if debug:
309
+ print(f"original offset={offset}, avail_numel={avail_numel}")
310
+
311
+ offset = zero2_align(offset)
312
+ avail_numel = zero2_align(avail_numel)
313
+
314
+ if debug:
315
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
316
+
317
+ # Sanity check
318
+ if offset != avail_numel:
319
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
320
+
321
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
322
+
323
+
324
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
325
+ state_dict = OrderedDict()
326
+
327
+ # buffers
328
+ buffers = zero_model_states[0].buffers
329
+ state_dict.update(buffers)
330
+ if debug:
331
+ print(f"added {len(buffers)} buffers")
332
+
333
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
334
+
335
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
336
+
337
+ # recover shared parameters
338
+ for pair in zero_model_states[0].shared_params:
339
+ if pair[1] in state_dict:
340
+ state_dict[pair[0]] = state_dict[pair[1]]
341
+
342
+ return state_dict
343
+
344
+
345
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
346
+ remainder = unpartitioned_numel % world_size
347
+ padding_numel = (world_size - remainder) if remainder else 0
348
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
349
+ return partitioned_numel, padding_numel
350
+
351
+
352
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
353
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
354
+ return
355
+
356
+ if debug:
357
+ for i in range(world_size):
358
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
359
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
360
+
361
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
362
+ wanted_params = len(frozen_param_shapes)
363
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
364
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
365
+ print(f'Frozen params: Have {avail_numel} numels to process.')
366
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
367
+
368
+ total_params = 0
369
+ total_numel = 0
370
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
371
+ total_params += 1
372
+ unpartitioned_numel = shape.numel()
373
+ total_numel += unpartitioned_numel
374
+
375
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
376
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
377
+
378
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
379
+
380
+ if debug:
381
+ print(
382
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
383
+ )
384
+
385
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
386
+
387
+
388
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
389
+ param_shapes = zero_model_states[0].param_shapes
390
+ avail_numel = fp32_flat_groups[0].numel() * world_size
391
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
392
+ # param, re-consolidating each param, while dealing with padding if any
393
+
394
+ # merge list of dicts, preserving order
395
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
396
+
397
+ if debug:
398
+ for i in range(world_size):
399
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
400
+
401
+ wanted_params = len(param_shapes)
402
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
403
+ # not asserting if there is a mismatch due to possible padding
404
+ avail_numel = fp32_flat_groups[0].numel() * world_size
405
+ print(f"Trainable params: Have {avail_numel} numels to process.")
406
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
407
+
408
+ # params
409
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
410
+ # out-of-core computing solution
411
+ offset = 0
412
+ total_numel = 0
413
+ total_params = 0
414
+ for name, shape in param_shapes.items():
415
+
416
+ unpartitioned_numel = shape.numel()
417
+ total_numel += unpartitioned_numel
418
+ total_params += 1
419
+
420
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
421
+
422
+ if debug:
423
+ print(
424
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
425
+ )
426
+
427
+ # XXX: memory usage doubles here
428
+ state_dict[name] = torch.cat(
429
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
430
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
431
+ offset += partitioned_numel
432
+
433
+ offset *= world_size
434
+
435
+ # Sanity check
436
+ if offset != avail_numel:
437
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
438
+
439
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
440
+
441
+
442
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
443
+ state_dict = OrderedDict()
444
+
445
+ # buffers
446
+ buffers = zero_model_states[0].buffers
447
+ state_dict.update(buffers)
448
+ if debug:
449
+ print(f"added {len(buffers)} buffers")
450
+
451
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
452
+
453
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
454
+
455
+ # recover shared parameters
456
+ for pair in zero_model_states[0].shared_params:
457
+ if pair[1] in state_dict:
458
+ state_dict[pair[0]] = state_dict[pair[1]]
459
+
460
+ return state_dict
461
+
462
+
463
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
464
+ """
465
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
466
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
467
+ via a model hub.
468
+
469
+ Args:
470
+ - ``checkpoint_dir``: path to the desired checkpoint folder
471
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
472
+
473
+ Returns:
474
+ - pytorch ``state_dict``
475
+
476
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
477
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
478
+ the checkpoint.
479
+
480
+ A typical usage might be ::
481
+
482
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
483
+ # do the training and checkpoint saving
484
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
485
+ model = model.cpu() # move to cpu
486
+ model.load_state_dict(state_dict)
487
+ # submit to model hub or save the model to share with others
488
+
489
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
490
+ application. i.e. you will need to re-initialize the deepspeed engine, since
491
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
492
+
493
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
494
+
495
+ """
496
+ if tag is None:
497
+ latest_path = os.path.join(checkpoint_dir, 'latest')
498
+ if os.path.isfile(latest_path):
499
+ with open(latest_path, 'r') as fd:
500
+ tag = fd.read().strip()
501
+ else:
502
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
503
+
504
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
505
+
506
+ if not os.path.isdir(ds_checkpoint_dir):
507
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
508
+
509
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
510
+
511
+
512
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
513
+ """
514
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
515
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
516
+
517
+ Args:
518
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
519
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
520
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
521
+ """
522
+
523
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
524
+ print(f"Saving fp32 state dict to {output_file}")
525
+ torch.save(state_dict, output_file)
526
+
527
+
528
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
529
+ """
530
+ 1. Put the provided model to cpu
531
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
532
+ 3. Load it into the provided model
533
+
534
+ Args:
535
+ - ``model``: the model object to update
536
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
537
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
538
+
539
+ Returns:
540
+ - ``model`: modified model
541
+
542
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
543
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
544
+ conveniently placed for you in the checkpoint folder.
545
+
546
+ A typical usage might be ::
547
+
548
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
549
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
550
+ # submit to model hub or save the model to share with others
551
+
552
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
553
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
554
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
555
+
556
+ """
557
+ logger.info(f"Extracting fp32 weights")
558
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
559
+
560
+ logger.info(f"Overwriting model with fp32 weights")
561
+ model = model.cpu()
562
+ model.load_state_dict(state_dict, strict=False)
563
+
564
+ return model
565
+
566
+
567
+ if __name__ == "__main__":
568
+
569
+ parser = argparse.ArgumentParser()
570
+ parser.add_argument("checkpoint_dir",
571
+ type=str,
572
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
573
+ parser.add_argument(
574
+ "output_file",
575
+ type=str,
576
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
577
+ parser.add_argument("-t",
578
+ "--tag",
579
+ type=str,
580
+ default=None,
581
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
582
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
583
+ args = parser.parse_args()
584
+
585
+ debug = args.debug
586
+
587
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)