SiLamine commited on
Commit
29f5353
·
verified ·
1 Parent(s): 261672a

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 253.07 +/- 17.44
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff857df09d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff857df0a60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff857df0af0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff857df0b80>", "_build": "<function ActorCriticPolicy._build at 0x7ff857df0c10>", "forward": "<function ActorCriticPolicy.forward at 0x7ff857df0ca0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff857df0d30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff857df0dc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff857df0e50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff857df0ee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff857df0f70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff857df1000>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff857dda080>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1713779895711867144, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALNE8L32pHa6wdiauzUc4jgVgZo6YtkdOgAAgD8AAIA/bXoWvo9+Pbotkdw2XmogMbfBmDiL2fm1AACAPwAAgD/zg8Y937QUP5YkhL61+qe+UEN2vJajbL0AAAAAAAAAADMoGL0KxB4/w5A7PUfaZ76g6U27uNb0vAAAAAAAAAAAprvkvSkUJLq2Eow77ZBsNn/+6rqEoqG6AACAPwAAAABmUmO9j/5Hul2Przvikk42sQUzOkhyTDUAAIA/AACAP13Lab6QNoM/O43fvky3mr4WDHq+bUxbvgAAAAAAAAAAgNQVvUiHlrq0kga0guF5rx2FOjeocJ0zAACAPwAAgD9DBWC+sR98PkabKT5jaSO+5FUfPQ2ZW7wAAAAAAAAAAM00wbt/uFw+e23dvRkxhr5PaT48FfuBPQAAAAAAAAAAsxcavr0mKDxnuaY9PS0TvpyIXry4A9u+AAAAAAAAgD8zd7O8e96Ouk9NFji69wQz2l2CuWoxLrcAAIA/AACAP816nD2XAeg+rBiLvmcGj77BBQ69UhYPPQAAAAAAAAAA5nWqvVwzObqkZLG3VZBdMeFhlDrA+802AACAPwAAgD8AsBg7Ka9JvONNa7382Ks8ojqvPXqzi70AAIA/AACAP2aJI70DlAG8KlZ4u2pGKDzD3HM9mUEVvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGKVcLKFIuqMAWyUTegDjAF0lEdArZbzeXRgJHV9lChoBkdAZpaqR2bG3mgHTegDaAhHQK2aC7jDKo11fZQoaAZHQGRJ5HNHH3loB03oA2gIR0CtmquAZsKtdX2UKGgGR0BvQZw6ySmqaAdNFQJoCEdArZ4eV1Oj7HV9lChoBkdAUhTiuMdcS2gHS/BoCEdArZ658c+7lXV9lChoBkdAZIM9sabWmWgHTegDaAhHQK2gJMtbs4V1fZQoaAZHQGLBJ8neBQNoB03oA2gIR0CtoEZ/b0vodX2UKGgGR0BdVJMtbs4UaAdN6ANoCEdAraEY77sOXnV9lChoBkdAZ5Wtuk1uSGgHTegDaAhHQK2j3Jz1bq11fZQoaAZHQGOjIJJGvwFoB03oA2gIR0CtpiW/JvHcdX2UKGgGR0Bg4H/aQFLWaAdN6ANoCEdAraaUkleF+XV9lChoBkdAY6WfSx7iQ2gHTegDaAhHQK2o9vXsgMd1fZQoaAZHQG0Hk2pAD7toB02bA2gIR0CtrxcAaNuMdX2UKGgGR0BkSAPkJa7maAdN6ANoCEdArbujYf4h2XV9lChoBkdAYQvCBPKuCGgHTegDaAhHQK27+EbHZK51fZQoaAZHQGALggxJul5oB03oA2gIR0CtvCApKBd2dX2UKGgGR0Bj6kyJsO5KaAdN6ANoCEdArb2mY+jdpXV9lChoBkdAcGSVMmF8HGgHTV4DaAhHQK3B9WwNb1R1fZQoaAZHQGHas2m51/5oB03oA2gIR0Ctwf1N5+pgdX2UKGgGR0BixDOVxCIDaAdN6ANoCEdArcJxgLJCB3V9lChoBkdAX+4Suhbno2gHTegDaAhHQK3GgFX7tRh1fZQoaAZHQG6mCAMDwH9oB01dA2gIR0CtyB3dj5KwdX2UKGgGR0Bm002eg+QmaAdN6ANoCEdArch2jO9nLHV9lChoBkdAY7961LJ0XGgHTegDaAhHQK3Inp4bCJp1fZQoaAZHQF796hxo7FNoB03oA2gIR0CtyZBK+SKWdX2UKGgGR0Bs0QHmig01aAdNzwFoCEdArcqjhm5DqnV9lChoBkdATuvIbOu7pWgHTSgBaAhHQK3LveIEbHZ1fZQoaAZHQGW/+mFajetoB03oA2gIR0CtzibzCk44dX2UKGgGR0BgrYT9KmKqaAdN6ANoCEdArc6JaJQ+EHV9lChoBkdATY9OsT37DWgHTRQBaAhHQK3P1+H8CPp1fZQoaAZHQGC8exnnMdNoB03oA2gIR0Ct0K6Ei+tbdX2UKGgGR0BiQYNoakylaAdN6ANoCEdArdYKx7iQ1nV9lChoBkdAVTKOMl1KXmgHTegDaAhHQK3iZ/gBLf11fZQoaAZHQGQj2d/axotoB03oA2gIR0Ct4uoy0rsjdX2UKGgGR0Bi7EeMhougaAdN6ANoCEdAreRndVNpNHV9lChoBkdAcSawevIOpmgHTWYDaAhHQK3kvU2kzoF1fZQoaAZHQGGwmhufmLdoB03oA2gIR0Ct6JYYixFBdX2UKGgGR0Bw8Y7o0Q9SaAdNWAJoCEdAresl30PH1nV9lChoBkdAYWrlAeJYT2gHTegDaAhHQK3tcQXAM2F1fZQoaAZHQG3j3+ERJ3BoB009AWgIR0Ct7lzAN5MUdX2UKGgGR0BjblaMaS9vaAdN6ANoCEdAre6jWRRuTHV9lChoBkdAYibVy3kPtmgHTegDaAhHQK3vBEm6XjV1fZQoaAZHQF9jDye7L+xoB03oA2gIR0Ct78Cr92ovdX2UKGgGR0Baoz9bX6InaAdN6ANoCEdArfCILApKBnV9lChoBkdAYflSwW3z+WgHTegDaAhHQK3xsJkXk5p1fZQoaAZHQHCInEhq0t1oB008AmgIR0Ct82RcNYr8dX2UKGgGR0BnZY+Y+jdpaAdN6ANoCEdArfQ9BhQWN3V9lChoBkdAY5AKLKmsNmgHTegDaAhHQK30nIsiB5J1fZQoaAZHQGGzyNGViWpoB03oA2gIR0Ct9rZxJd0JdX2UKGgGR0BBjZULlV94aAdNMQFoCEdArfewTXarWHV9lChoBkdAUarxMFlkH2gHTR8BaAhHQK388AwPAfx1fZQoaAZHQF7H0WdmQKdoB03oA2gIR0Ct/RULc9GJdX2UKGgGR0BFvVdPci4baAdL+mgIR0Ct/rKe9SMtdX2UKGgGR0BjGFl9Sde6aAdN6ANoCEdArghrhaTwD3V9lChoBkdAblBlAeJYT2gHTTwCaAhHQK4Jlg+hXbN1fZQoaAZHQGRPvoNd7fJoB03oA2gIR0CuCh/EOy3TdX2UKGgGR0BxGKIMz/IbaAdNlgJoCEdArgpwJ/oaDXV9lChoBkdAbSYwPAfuC2gHTd0CaAhHQK4LtaW5Yo11fZQoaAZHQHG1NvKlpGpoB02oAWgIR0CuDInbh3qzdX2UKGgGR0BgQm0b961LaAdN6ANoCEdArg0/cnE2pHV9lChoBkdAZ4O9kjHGTGgHTegDaAhHQK4PM54GD+R1fZQoaAZHwBANBrvb48FoB00kAWgIR0CuEX6ef7JodX2UKGgGR0Bl5eiSJTESaAdN6ANoCEdArhG9kUbkwXV9lChoBkdAZOH4EfT1CmgHTegDaAhHQK4Sv57gKnh1fZQoaAZHQGh+f0/W1+loB03oA2gIR0CuFhvOQhfTdX2UKGgGR0BxtHmPo3aSaAdNGAJoCEdArhfRs2vSt3V9lChoBkdAZsQGWUr08WgHTegDaAhHQK4X+XSBshx1fZQoaAZHQHHUIao/A0toB024AWgIR0CuGKX668QJdX2UKGgGR0BjepC0F8ohaAdN6ANoCEdArhlOqm0mdHV9lChoBkdAPbbX18LKFWgHTRYBaAhHQK4aNqHGjsV1fZQoaAZHQGRpnPeHi3poB03oA2gIR0CuIOIX0oSddX2UKGgGR0BgOb37DVH4aAdN6ANoCEdAriELkKeCkHV9lChoBkdAXXsdKdxyXGgHTegDaAhHQK4i4MaS9uh1fZQoaAZHQGFPqwY+B6NoB03oA2gIR0CuI85L7GeddX2UKGgGR0Bw+v4h2W6caAdNpgFoCEdAriPmzUqhDnV9lChoBkdAXSgvUSZjQWgHTegDaAhHQK4wFaX8fmt1fZQoaAZHQGRj0W/JvHdoB03oA2gIR0CuMcsRQJokdX2UKGgGR0BvGaohpxm1aAdNFwJoCEdArjLheeFtbnV9lChoBkdAXTbRMN+b3GgHTegDaAhHQK4z3ALRa5h1fZQoaAZHQGcFNi6QNkRoB03oA2gIR0CuNkO45Lh8dX2UKGgGR0BqPaqXF98aaAdN7gJoCEdArjfTOTq0MXV9lChoBkdAYQ4+ajN6gWgHTegDaAhHQK44c/qPfbd1fZQoaAZHQGTjiMo+fRNoB03oA2gIR0CuOKaUJOWTdX2UKGgGR0AC1Jvo/zJ7aAdNKQFoCEdArjj2bTc7AHV9lChoBkdAcVksDnvDxmgHTXsBaAhHQK45LVPva111fZQoaAZHQG+dkqMFUyZoB00GA2gIR0CuOv0tqYZ3dX2UKGgGR0Bw/URxtHhCaAdNEgJoCEdArjyKuIRAbHV9lChoBkdAcKORUFSsKmgHTfcBaAhHQK48mRqXWvt1fZQoaAZHQGzFqL0jC55oB02GA2gIR0CuPNzNt65YdX2UKGgGR0Bc8b7sOXmeaAdN6ANoCEdArjz4+wC8vnV9lChoBkdAcWXO6NEPUmgHTaQBaAhHQK4/2Qnx8Up1fZQoaAZHQGwqXlr/KhdoB02OAWgIR0CuRKs7MgU2dX2UKGgGR0ByFo+Sr5qNaAdNjAFoCEdArkVz+BH09XV9lChoBkdAcJgsV+I/JWgHTYsCaAhHQK5FxNfPX051fZQoaAZHQG+7svh60IFoB02bA2gIR0CuR0HPmgandX2UKGgGR0BwhupvP1L8aAdNagFoCEdArkhYfKZDzHV9lChoBkdAbDvpJwsGxGgHTbwCaAhHQK5IofnwG4Z1fZQoaAZHQHDV2Af+0gNoB00hAmgIR0CuSO3dbgTAdX2UKGgGR0BiATdP+GXYaAdN6ANoCEdArknpmGucMHV9lChoBkdAcbmfQrtmc2gHTc0CaAhHQK5MezLOiWV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e4efe8de81a155af1bbcf818a1459c6c51b9e71e5ce3a4822e76150787419ec
3
+ size 148084
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff857df09d0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff857df0a60>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff857df0af0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff857df0b80>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7ff857df0c10>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7ff857df0ca0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff857df0d30>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff857df0dc0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7ff857df0e50>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff857df0ee0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff857df0f70>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff857df1000>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7ff857dda080>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1713779895711867144,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALNE8L32pHa6wdiauzUc4jgVgZo6YtkdOgAAgD8AAIA/bXoWvo9+Pbotkdw2XmogMbfBmDiL2fm1AACAPwAAgD/zg8Y937QUP5YkhL61+qe+UEN2vJajbL0AAAAAAAAAADMoGL0KxB4/w5A7PUfaZ76g6U27uNb0vAAAAAAAAAAAprvkvSkUJLq2Eow77ZBsNn/+6rqEoqG6AACAPwAAAABmUmO9j/5Hul2Przvikk42sQUzOkhyTDUAAIA/AACAP13Lab6QNoM/O43fvky3mr4WDHq+bUxbvgAAAAAAAAAAgNQVvUiHlrq0kga0guF5rx2FOjeocJ0zAACAPwAAgD9DBWC+sR98PkabKT5jaSO+5FUfPQ2ZW7wAAAAAAAAAAM00wbt/uFw+e23dvRkxhr5PaT48FfuBPQAAAAAAAAAAsxcavr0mKDxnuaY9PS0TvpyIXry4A9u+AAAAAAAAgD8zd7O8e96Ouk9NFji69wQz2l2CuWoxLrcAAIA/AACAP816nD2XAeg+rBiLvmcGj77BBQ69UhYPPQAAAAAAAAAA5nWqvVwzObqkZLG3VZBdMeFhlDrA+802AACAPwAAgD8AsBg7Ka9JvONNa7382Ks8ojqvPXqzi70AAIA/AACAP2aJI70DlAG8KlZ4u2pGKDzD3HM9mUEVvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGKVcLKFIuqMAWyUTegDjAF0lEdArZbzeXRgJHV9lChoBkdAZpaqR2bG3mgHTegDaAhHQK2aC7jDKo11fZQoaAZHQGRJ5HNHH3loB03oA2gIR0CtmquAZsKtdX2UKGgGR0BvQZw6ySmqaAdNFQJoCEdArZ4eV1Oj7HV9lChoBkdAUhTiuMdcS2gHS/BoCEdArZ658c+7lXV9lChoBkdAZIM9sabWmWgHTegDaAhHQK2gJMtbs4V1fZQoaAZHQGLBJ8neBQNoB03oA2gIR0CtoEZ/b0vodX2UKGgGR0BdVJMtbs4UaAdN6ANoCEdAraEY77sOXnV9lChoBkdAZ5Wtuk1uSGgHTegDaAhHQK2j3Jz1bq11fZQoaAZHQGOjIJJGvwFoB03oA2gIR0CtpiW/JvHcdX2UKGgGR0Bg4H/aQFLWaAdN6ANoCEdAraaUkleF+XV9lChoBkdAY6WfSx7iQ2gHTegDaAhHQK2o9vXsgMd1fZQoaAZHQG0Hk2pAD7toB02bA2gIR0CtrxcAaNuMdX2UKGgGR0BkSAPkJa7maAdN6ANoCEdArbujYf4h2XV9lChoBkdAYQvCBPKuCGgHTegDaAhHQK27+EbHZK51fZQoaAZHQGALggxJul5oB03oA2gIR0CtvCApKBd2dX2UKGgGR0Bj6kyJsO5KaAdN6ANoCEdArb2mY+jdpXV9lChoBkdAcGSVMmF8HGgHTV4DaAhHQK3B9WwNb1R1fZQoaAZHQGHas2m51/5oB03oA2gIR0Ctwf1N5+pgdX2UKGgGR0BixDOVxCIDaAdN6ANoCEdArcJxgLJCB3V9lChoBkdAX+4Suhbno2gHTegDaAhHQK3GgFX7tRh1fZQoaAZHQG6mCAMDwH9oB01dA2gIR0CtyB3dj5KwdX2UKGgGR0Bm002eg+QmaAdN6ANoCEdArch2jO9nLHV9lChoBkdAY7961LJ0XGgHTegDaAhHQK3Inp4bCJp1fZQoaAZHQF796hxo7FNoB03oA2gIR0CtyZBK+SKWdX2UKGgGR0Bs0QHmig01aAdNzwFoCEdArcqjhm5DqnV9lChoBkdATuvIbOu7pWgHTSgBaAhHQK3LveIEbHZ1fZQoaAZHQGW/+mFajetoB03oA2gIR0CtzibzCk44dX2UKGgGR0BgrYT9KmKqaAdN6ANoCEdArc6JaJQ+EHV9lChoBkdATY9OsT37DWgHTRQBaAhHQK3P1+H8CPp1fZQoaAZHQGC8exnnMdNoB03oA2gIR0Ct0K6Ei+tbdX2UKGgGR0BiQYNoakylaAdN6ANoCEdArdYKx7iQ1nV9lChoBkdAVTKOMl1KXmgHTegDaAhHQK3iZ/gBLf11fZQoaAZHQGQj2d/axotoB03oA2gIR0Ct4uoy0rsjdX2UKGgGR0Bi7EeMhougaAdN6ANoCEdAreRndVNpNHV9lChoBkdAcSawevIOpmgHTWYDaAhHQK3kvU2kzoF1fZQoaAZHQGGwmhufmLdoB03oA2gIR0Ct6JYYixFBdX2UKGgGR0Bw8Y7o0Q9SaAdNWAJoCEdAresl30PH1nV9lChoBkdAYWrlAeJYT2gHTegDaAhHQK3tcQXAM2F1fZQoaAZHQG3j3+ERJ3BoB009AWgIR0Ct7lzAN5MUdX2UKGgGR0BjblaMaS9vaAdN6ANoCEdAre6jWRRuTHV9lChoBkdAYibVy3kPtmgHTegDaAhHQK3vBEm6XjV1fZQoaAZHQF9jDye7L+xoB03oA2gIR0Ct78Cr92ovdX2UKGgGR0Baoz9bX6InaAdN6ANoCEdArfCILApKBnV9lChoBkdAYflSwW3z+WgHTegDaAhHQK3xsJkXk5p1fZQoaAZHQHCInEhq0t1oB008AmgIR0Ct82RcNYr8dX2UKGgGR0BnZY+Y+jdpaAdN6ANoCEdArfQ9BhQWN3V9lChoBkdAY5AKLKmsNmgHTegDaAhHQK30nIsiB5J1fZQoaAZHQGGzyNGViWpoB03oA2gIR0Ct9rZxJd0JdX2UKGgGR0BBjZULlV94aAdNMQFoCEdArfewTXarWHV9lChoBkdAUarxMFlkH2gHTR8BaAhHQK388AwPAfx1fZQoaAZHQF7H0WdmQKdoB03oA2gIR0Ct/RULc9GJdX2UKGgGR0BFvVdPci4baAdL+mgIR0Ct/rKe9SMtdX2UKGgGR0BjGFl9Sde6aAdN6ANoCEdArghrhaTwD3V9lChoBkdAblBlAeJYT2gHTTwCaAhHQK4Jlg+hXbN1fZQoaAZHQGRPvoNd7fJoB03oA2gIR0CuCh/EOy3TdX2UKGgGR0BxGKIMz/IbaAdNlgJoCEdArgpwJ/oaDXV9lChoBkdAbSYwPAfuC2gHTd0CaAhHQK4LtaW5Yo11fZQoaAZHQHG1NvKlpGpoB02oAWgIR0CuDInbh3qzdX2UKGgGR0BgQm0b961LaAdN6ANoCEdArg0/cnE2pHV9lChoBkdAZ4O9kjHGTGgHTegDaAhHQK4PM54GD+R1fZQoaAZHwBANBrvb48FoB00kAWgIR0CuEX6ef7JodX2UKGgGR0Bl5eiSJTESaAdN6ANoCEdArhG9kUbkwXV9lChoBkdAZOH4EfT1CmgHTegDaAhHQK4Sv57gKnh1fZQoaAZHQGh+f0/W1+loB03oA2gIR0CuFhvOQhfTdX2UKGgGR0BxtHmPo3aSaAdNGAJoCEdArhfRs2vSt3V9lChoBkdAZsQGWUr08WgHTegDaAhHQK4X+XSBshx1fZQoaAZHQHHUIao/A0toB024AWgIR0CuGKX668QJdX2UKGgGR0BjepC0F8ohaAdN6ANoCEdArhlOqm0mdHV9lChoBkdAPbbX18LKFWgHTRYBaAhHQK4aNqHGjsV1fZQoaAZHQGRpnPeHi3poB03oA2gIR0CuIOIX0oSddX2UKGgGR0BgOb37DVH4aAdN6ANoCEdAriELkKeCkHV9lChoBkdAXXsdKdxyXGgHTegDaAhHQK4i4MaS9uh1fZQoaAZHQGFPqwY+B6NoB03oA2gIR0CuI85L7GeddX2UKGgGR0Bw+v4h2W6caAdNpgFoCEdAriPmzUqhDnV9lChoBkdAXSgvUSZjQWgHTegDaAhHQK4wFaX8fmt1fZQoaAZHQGRj0W/JvHdoB03oA2gIR0CuMcsRQJokdX2UKGgGR0BvGaohpxm1aAdNFwJoCEdArjLheeFtbnV9lChoBkdAXTbRMN+b3GgHTegDaAhHQK4z3ALRa5h1fZQoaAZHQGcFNi6QNkRoB03oA2gIR0CuNkO45Lh8dX2UKGgGR0BqPaqXF98aaAdN7gJoCEdArjfTOTq0MXV9lChoBkdAYQ4+ajN6gWgHTegDaAhHQK44c/qPfbd1fZQoaAZHQGTjiMo+fRNoB03oA2gIR0CuOKaUJOWTdX2UKGgGR0AC1Jvo/zJ7aAdNKQFoCEdArjj2bTc7AHV9lChoBkdAcVksDnvDxmgHTXsBaAhHQK45LVPva111fZQoaAZHQG+dkqMFUyZoB00GA2gIR0CuOv0tqYZ3dX2UKGgGR0Bw/URxtHhCaAdNEgJoCEdArjyKuIRAbHV9lChoBkdAcKORUFSsKmgHTfcBaAhHQK48mRqXWvt1fZQoaAZHQGzFqL0jC55oB02GA2gIR0CuPNzNt65YdX2UKGgGR0Bc8b7sOXmeaAdN6ANoCEdArjz4+wC8vnV9lChoBkdAcWXO6NEPUmgHTaQBaAhHQK4/2Qnx8Up1fZQoaAZHQGwqXlr/KhdoB02OAWgIR0CuRKs7MgU2dX2UKGgGR0ByFo+Sr5qNaAdNjAFoCEdArkVz+BH09XV9lChoBkdAcJgsV+I/JWgHTYsCaAhHQK5FxNfPX051fZQoaAZHQG+7svh60IFoB02bA2gIR0CuR0HPmgandX2UKGgGR0BwhupvP1L8aAdNagFoCEdArkhYfKZDzHV9lChoBkdAbDvpJwsGxGgHTbwCaAhHQK5IofnwG4Z1fZQoaAZHQHDV2Af+0gNoB00hAmgIR0CuSO3dbgTAdX2UKGgGR0BiATdP+GXYaAdN6ANoCEdArknpmGucMHV9lChoBkdAcbmfQrtmc2gHTc0CaAhHQK5MezLOiWV1ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4197637111219b7be327ec31b21bd54dfbf54626f930ab93895b6ffed85f4031
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d00ce2ac2899a5431a6245850476d42a5fb80cf85c7e9d4f0ce899138622677
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.2.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (171 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 253.07182475908513, "std_reward": 17.439185790299675, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-04-22T10:28:48.202116"}