--- license: apache-2.0 base_model: distilbert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: DIALOGUE_one results: [] --- # DIALOGUE_one This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1637 - Precision: 0.9762 - Recall: 0.9737 - F1: 0.9736 - Accuracy: 0.9737 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 1.1634 | 0.62 | 30 | 0.7096 | 0.8900 | 0.8421 | 0.8322 | 0.8421 | | 0.5104 | 1.25 | 60 | 0.2078 | 0.9524 | 0.9474 | 0.9472 | 0.9474 | | 0.1827 | 1.88 | 90 | 0.1302 | 0.9637 | 0.9605 | 0.9604 | 0.9605 | | 0.0426 | 2.5 | 120 | 0.0556 | 0.9762 | 0.9737 | 0.9736 | 0.9737 | | 0.0178 | 3.12 | 150 | 0.1489 | 0.9421 | 0.9342 | 0.9339 | 0.9342 | | 0.0091 | 3.75 | 180 | 0.1377 | 0.9762 | 0.9737 | 0.9736 | 0.9737 | | 0.0054 | 4.38 | 210 | 0.1268 | 0.9762 | 0.9737 | 0.9736 | 0.9737 | | 0.0041 | 5.0 | 240 | 0.1340 | 0.9762 | 0.9737 | 0.9736 | 0.9737 | | 0.0033 | 5.62 | 270 | 0.1405 | 0.9762 | 0.9737 | 0.9736 | 0.9737 | | 0.0029 | 6.25 | 300 | 0.1328 | 0.9762 | 0.9737 | 0.9736 | 0.9737 | | 0.0024 | 6.88 | 330 | 0.1372 | 0.9762 | 0.9737 | 0.9736 | 0.9737 | | 0.0021 | 7.5 | 360 | 0.1467 | 0.9762 | 0.9737 | 0.9736 | 0.9737 | | 0.0019 | 8.12 | 390 | 0.1397 | 0.9762 | 0.9737 | 0.9736 | 0.9737 | | 0.0016 | 8.75 | 420 | 0.1445 | 0.9762 | 0.9737 | 0.9736 | 0.9737 | | 0.0015 | 9.38 | 450 | 0.1510 | 0.9762 | 0.9737 | 0.9736 | 0.9737 | | 0.0013 | 10.0 | 480 | 0.1413 | 0.9762 | 0.9737 | 0.9736 | 0.9737 | | 0.0012 | 10.62 | 510 | 0.1453 | 0.9762 | 0.9737 | 0.9736 | 0.9737 | | 0.0011 | 11.25 | 540 | 0.1494 | 0.9762 | 0.9737 | 0.9736 | 0.9737 | | 0.001 | 11.88 | 570 | 0.1480 | 0.9762 | 0.9737 | 0.9736 | 0.9737 | | 0.001 | 12.5 | 600 | 0.1514 | 0.9762 | 0.9737 | 0.9736 | 0.9737 | | 0.0008 | 13.12 | 630 | 0.1513 | 0.9762 | 0.9737 | 0.9736 | 0.9737 | | 0.0008 | 13.75 | 660 | 0.1514 | 0.9762 | 0.9737 | 0.9736 | 0.9737 | | 0.0008 | 14.38 | 690 | 0.1521 | 0.9762 | 0.9737 | 0.9736 | 0.9737 | | 0.0008 | 15.0 | 720 | 0.1527 | 0.9762 | 0.9737 | 0.9736 | 0.9737 | | 0.0007 | 15.62 | 750 | 0.1528 | 0.9762 | 0.9737 | 0.9736 | 0.9737 | | 0.0007 | 16.25 | 780 | 0.1563 | 0.9762 | 0.9737 | 0.9736 | 0.9737 | | 0.0006 | 16.88 | 810 | 0.1570 | 0.9762 | 0.9737 | 0.9736 | 0.9737 | | 0.0006 | 17.5 | 840 | 0.1554 | 0.9762 | 0.9737 | 0.9736 | 0.9737 | | 0.0006 | 18.12 | 870 | 0.1560 | 0.9762 | 0.9737 | 0.9736 | 0.9737 | | 0.0006 | 18.75 | 900 | 0.1565 | 0.9762 | 0.9737 | 0.9736 | 0.9737 | | 0.0005 | 19.38 | 930 | 0.1571 | 0.9762 | 0.9737 | 0.9736 | 0.9737 | | 0.0005 | 20.0 | 960 | 0.1576 | 0.9762 | 0.9737 | 0.9736 | 0.9737 | | 0.0005 | 20.62 | 990 | 0.1591 | 0.9762 | 0.9737 | 0.9736 | 0.9737 | | 0.0005 | 21.25 | 1020 | 0.1605 | 0.9762 | 0.9737 | 0.9736 | 0.9737 | | 0.0005 | 21.88 | 1050 | 0.1608 | 0.9762 | 0.9737 | 0.9736 | 0.9737 | | 0.0005 | 22.5 | 1080 | 0.1613 | 0.9762 | 0.9737 | 0.9736 | 0.9737 | | 0.0005 | 23.12 | 1110 | 0.1609 | 0.9762 | 0.9737 | 0.9736 | 0.9737 | | 0.0004 | 23.75 | 1140 | 0.1611 | 0.9762 | 0.9737 | 0.9736 | 0.9737 | | 0.0004 | 24.38 | 1170 | 0.1617 | 0.9762 | 0.9737 | 0.9736 | 0.9737 | | 0.0004 | 25.0 | 1200 | 0.1617 | 0.9762 | 0.9737 | 0.9736 | 0.9737 | | 0.0004 | 25.62 | 1230 | 0.1625 | 0.9762 | 0.9737 | 0.9736 | 0.9737 | | 0.0004 | 26.25 | 1260 | 0.1628 | 0.9762 | 0.9737 | 0.9736 | 0.9737 | | 0.0004 | 26.88 | 1290 | 0.1630 | 0.9762 | 0.9737 | 0.9736 | 0.9737 | | 0.0004 | 27.5 | 1320 | 0.1635 | 0.9762 | 0.9737 | 0.9736 | 0.9737 | | 0.0004 | 28.12 | 1350 | 0.1636 | 0.9762 | 0.9737 | 0.9736 | 0.9737 | | 0.0004 | 28.75 | 1380 | 0.1637 | 0.9762 | 0.9737 | 0.9736 | 0.9737 | | 0.0004 | 29.38 | 1410 | 0.1637 | 0.9762 | 0.9737 | 0.9736 | 0.9737 | | 0.0004 | 30.0 | 1440 | 0.1637 | 0.9762 | 0.9737 | 0.9736 | 0.9737 | ### Framework versions - Transformers 4.37.1 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1