SharonTudi commited on
Commit
a578ed8
·
verified ·
1 Parent(s): a763807

End of training

Browse files
README.md CHANGED
@@ -20,11 +20,11 @@ should probably proofread and complete it, then remove this comment. -->
20
 
21
  This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the None dataset.
22
  It achieves the following results on the evaluation set:
23
- - Loss: 0.1059
24
- - Precision: 0.9762
25
- - Recall: 0.9737
26
- - F1: 0.9736
27
- - Accuracy: 0.9737
28
 
29
  ## Model description
30
 
@@ -55,54 +55,54 @@ The following hyperparameters were used during training:
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
- | 1.1272 | 0.62 | 30 | 0.6482 | 0.9327 | 0.9079 | 0.9047 | 0.9079 |
59
- | 0.5355 | 1.25 | 60 | 0.2417 | 0.9637 | 0.9605 | 0.9604 | 0.9605 |
60
- | 0.2089 | 1.88 | 90 | 0.1224 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
61
- | 0.0526 | 2.5 | 120 | 0.0476 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
62
- | 0.0215 | 3.12 | 150 | 0.0580 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
63
- | 0.0096 | 3.75 | 180 | 0.0548 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
64
- | 0.0067 | 4.38 | 210 | 0.1091 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
65
- | 0.0049 | 5.0 | 240 | 0.0871 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
66
- | 0.0039 | 5.62 | 270 | 0.0828 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
67
- | 0.0033 | 6.25 | 300 | 0.0825 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
68
- | 0.0027 | 6.88 | 330 | 0.0886 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
69
- | 0.0025 | 7.5 | 360 | 0.0903 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
70
- | 0.0022 | 8.12 | 390 | 0.0922 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
71
- | 0.0019 | 8.75 | 420 | 0.0902 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
72
- | 0.0017 | 9.38 | 450 | 0.0911 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
73
- | 0.0016 | 10.0 | 480 | 0.0895 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
74
- | 0.0014 | 10.62 | 510 | 0.0908 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
75
- | 0.0014 | 11.25 | 540 | 0.0917 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
76
- | 0.0012 | 11.88 | 570 | 0.0925 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
77
- | 0.0011 | 12.5 | 600 | 0.0924 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
78
- | 0.001 | 13.12 | 630 | 0.0921 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
79
- | 0.001 | 13.75 | 660 | 0.0941 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
80
- | 0.0009 | 14.38 | 690 | 0.0956 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
81
- | 0.0009 | 15.0 | 720 | 0.0938 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
82
- | 0.0008 | 15.62 | 750 | 0.0932 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
83
- | 0.0008 | 16.25 | 780 | 0.0940 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
84
- | 0.0007 | 16.88 | 810 | 0.0976 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
85
- | 0.0007 | 17.5 | 840 | 0.0962 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
86
- | 0.0007 | 18.12 | 870 | 0.0974 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
87
- | 0.0007 | 18.75 | 900 | 0.1010 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
88
- | 0.0006 | 19.38 | 930 | 0.1006 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
89
- | 0.0006 | 20.0 | 960 | 0.1008 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
90
- | 0.0006 | 20.62 | 990 | 0.1006 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
91
- | 0.0006 | 21.25 | 1020 | 0.1016 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
92
- | 0.0006 | 21.88 | 1050 | 0.1013 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
93
- | 0.0005 | 22.5 | 1080 | 0.1000 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
94
- | 0.0006 | 23.12 | 1110 | 0.1019 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
95
- | 0.0005 | 23.75 | 1140 | 0.1079 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
96
- | 0.0005 | 24.38 | 1170 | 0.1081 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
97
- | 0.0005 | 25.0 | 1200 | 0.1068 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
98
- | 0.0005 | 25.62 | 1230 | 0.1072 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
99
- | 0.0005 | 26.25 | 1260 | 0.1066 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
100
- | 0.0005 | 26.88 | 1290 | 0.1060 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
101
- | 0.0005 | 27.5 | 1320 | 0.1059 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
102
- | 0.0005 | 28.12 | 1350 | 0.1058 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
103
- | 0.0005 | 28.75 | 1380 | 0.1057 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
104
- | 0.0005 | 29.38 | 1410 | 0.1058 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
105
- | 0.0005 | 30.0 | 1440 | 0.1059 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
106
 
107
 
108
  ### Framework versions
 
20
 
21
  This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the None dataset.
22
  It achieves the following results on the evaluation set:
23
+ - Loss: 1.1527
24
+ - Precision: 0.8207
25
+ - Recall: 0.8158
26
+ - F1: 0.8103
27
+ - Accuracy: 0.8158
28
 
29
  ## Model description
30
 
 
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | 1.3373 | 0.62 | 30 | 1.2236 | 0.6642 | 0.5263 | 0.4857 | 0.5263 |
59
+ | 0.9036 | 1.25 | 60 | 0.8198 | 0.7325 | 0.7237 | 0.7209 | 0.7237 |
60
+ | 0.5825 | 1.88 | 90 | 0.6795 | 0.7291 | 0.7237 | 0.7257 | 0.7237 |
61
+ | 0.4134 | 2.5 | 120 | 0.5864 | 0.8026 | 0.8026 | 0.8017 | 0.8026 |
62
+ | 0.2866 | 3.12 | 150 | 0.6642 | 0.7360 | 0.7368 | 0.7352 | 0.7368 |
63
+ | 0.2291 | 3.75 | 180 | 0.7632 | 0.7673 | 0.7632 | 0.7646 | 0.7632 |
64
+ | 0.2907 | 4.38 | 210 | 0.7228 | 0.8109 | 0.7632 | 0.7607 | 0.7632 |
65
+ | 0.1721 | 5.0 | 240 | 0.7910 | 0.7793 | 0.7763 | 0.7765 | 0.7763 |
66
+ | 0.1475 | 5.62 | 270 | 0.7622 | 0.8173 | 0.8158 | 0.8156 | 0.8158 |
67
+ | 0.1541 | 6.25 | 300 | 0.6803 | 0.7911 | 0.7895 | 0.7896 | 0.7895 |
68
+ | 0.0706 | 6.88 | 330 | 0.8729 | 0.8207 | 0.8158 | 0.8103 | 0.8158 |
69
+ | 0.0825 | 7.5 | 360 | 0.8173 | 0.8472 | 0.8421 | 0.8408 | 0.8421 |
70
+ | 0.0419 | 8.12 | 390 | 0.6985 | 0.8356 | 0.8289 | 0.8294 | 0.8289 |
71
+ | 0.0588 | 8.75 | 420 | 0.7242 | 0.8137 | 0.8026 | 0.8041 | 0.8026 |
72
+ | 0.0535 | 9.38 | 450 | 0.9187 | 0.8060 | 0.8026 | 0.8007 | 0.8026 |
73
+ | 0.0275 | 10.0 | 480 | 1.3225 | 0.7839 | 0.7763 | 0.7615 | 0.7763 |
74
+ | 0.01 | 10.62 | 510 | 1.2285 | 0.7667 | 0.7632 | 0.7533 | 0.7632 |
75
+ | 0.0336 | 11.25 | 540 | 1.1652 | 0.8170 | 0.8026 | 0.7976 | 0.8026 |
76
+ | 0.0031 | 11.88 | 570 | 0.8795 | 0.7941 | 0.7895 | 0.7854 | 0.7895 |
77
+ | 0.0019 | 12.5 | 600 | 1.0385 | 0.8076 | 0.8026 | 0.7971 | 0.8026 |
78
+ | 0.0035 | 13.12 | 630 | 1.1230 | 0.8207 | 0.8158 | 0.8103 | 0.8158 |
79
+ | 0.0016 | 13.75 | 660 | 1.0793 | 0.8207 | 0.8158 | 0.8103 | 0.8158 |
80
+ | 0.0014 | 14.38 | 690 | 1.0877 | 0.8207 | 0.8158 | 0.8103 | 0.8158 |
81
+ | 0.0015 | 15.0 | 720 | 1.1482 | 0.8207 | 0.8158 | 0.8103 | 0.8158 |
82
+ | 0.0012 | 15.62 | 750 | 1.1424 | 0.7935 | 0.7895 | 0.7834 | 0.7895 |
83
+ | 0.0011 | 16.25 | 780 | 1.0405 | 0.8207 | 0.8158 | 0.8103 | 0.8158 |
84
+ | 0.0011 | 16.88 | 810 | 1.4101 | 0.7874 | 0.7763 | 0.7630 | 0.7763 |
85
+ | 0.0012 | 17.5 | 840 | 1.2321 | 0.8207 | 0.8158 | 0.8103 | 0.8158 |
86
+ | 0.001 | 18.12 | 870 | 1.1961 | 0.8207 | 0.8158 | 0.8103 | 0.8158 |
87
+ | 0.001 | 18.75 | 900 | 1.1638 | 0.8207 | 0.8158 | 0.8103 | 0.8158 |
88
+ | 0.0009 | 19.38 | 930 | 1.1429 | 0.8207 | 0.8158 | 0.8103 | 0.8158 |
89
+ | 0.0009 | 20.0 | 960 | 1.3692 | 0.7839 | 0.7763 | 0.7615 | 0.7763 |
90
+ | 0.0009 | 20.62 | 990 | 1.3196 | 0.7839 | 0.7763 | 0.7615 | 0.7763 |
91
+ | 0.0008 | 21.25 | 1020 | 1.1942 | 0.7839 | 0.7763 | 0.7615 | 0.7763 |
92
+ | 0.0008 | 21.88 | 1050 | 1.1439 | 0.8207 | 0.8158 | 0.8103 | 0.8158 |
93
+ | 0.0008 | 22.5 | 1080 | 1.1689 | 0.8207 | 0.8158 | 0.8103 | 0.8158 |
94
+ | 0.0008 | 23.12 | 1110 | 1.1553 | 0.8207 | 0.8158 | 0.8103 | 0.8158 |
95
+ | 0.0007 | 23.75 | 1140 | 1.1560 | 0.8207 | 0.8158 | 0.8103 | 0.8158 |
96
+ | 0.0007 | 24.38 | 1170 | 1.1451 | 0.8207 | 0.8158 | 0.8103 | 0.8158 |
97
+ | 0.0007 | 25.0 | 1200 | 1.1473 | 0.8207 | 0.8158 | 0.8103 | 0.8158 |
98
+ | 0.0007 | 25.62 | 1230 | 1.1412 | 0.8207 | 0.8158 | 0.8103 | 0.8158 |
99
+ | 0.0007 | 26.25 | 1260 | 1.1655 | 0.8207 | 0.8158 | 0.8103 | 0.8158 |
100
+ | 0.0007 | 26.88 | 1290 | 1.1649 | 0.8207 | 0.8158 | 0.8103 | 0.8158 |
101
+ | 0.0006 | 27.5 | 1320 | 1.1556 | 0.8207 | 0.8158 | 0.8103 | 0.8158 |
102
+ | 0.0006 | 28.12 | 1350 | 1.1521 | 0.8207 | 0.8158 | 0.8103 | 0.8158 |
103
+ | 0.0006 | 28.75 | 1380 | 1.1481 | 0.8207 | 0.8158 | 0.8103 | 0.8158 |
104
+ | 0.0008 | 29.38 | 1410 | 1.1511 | 0.8207 | 0.8158 | 0.8103 | 0.8158 |
105
+ | 0.0006 | 30.0 | 1440 | 1.1527 | 0.8207 | 0.8158 | 0.8103 | 0.8158 |
106
 
107
 
108
  ### Framework versions
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0a1d32ae17cef0c5a790ab7f5ca7c3f466a59e8662ea9799802729f7ba98e1f2
3
  size 263150840
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:09c7427ea012b025bda2f34f64ed40ef4215eb1e9c2117052ed746b6b82c46f6
3
  size 263150840
runs/Jan21_12-07-36_d1e8ecbadd94/events.out.tfevents.1705838862.d1e8ecbadd94.366.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1217875cc434eecd975c97e42cdd790be8cce12d93677242a6b82fc7e0070310
3
+ size 34954
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d4a662980bff89e98fe05710c1d922d9cce0671d5afabaa61a6ed69c37812efd
3
  size 4664
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:404bfff7d8d97d27a0d247d82159e9cba93f34a3803eae9c6f494c91a96b2cff
3
  size 4664