File size: 1,833 Bytes
30d1048
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7434a09
30d1048
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6598483
 
 
 
c04b856
6598483
7434a09
6598483
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
---
tags:
- text-to-image
- lora
- diffusers
- template:diffusion-lora
widget:
- text: a fisherman nearby river, Chinese line art
  parameters:
    negative_prompt: (lowres, low quality, worst quality)
  output:
    url: images/0640244a27a6955bdc2740ef1bacafaf716d194fb77c5346264d91da.jpg
- text: a woman, Chinese line art
  parameters:
    negative_prompt: (lowres, low quality, worst quality)
  output:
    url: images/f1984bbc23957d65e0bd86273f7e8b1c22b53e2cd51ab4fa83680c87.jpg
- text: Beijing City, Chinese line art
  parameters:
    negative_prompt: (lowres, low quality, worst quality)
  output:
    url: images/756607bc025fe25935c39225bf18f3c98d24aa5878541533a9ca3424.jpg
base_model: stabilityai/stable-diffusion-3.5-large
instance_prompt: Chinese line art
license: other
license_name: stabilityai-ai-community
license_link: >-
  https://huggingface.co/stabilityai/stable-diffusion-3-medium/blob/main/LICENSE.md
---
# SD3.5-LoRA-Chinese-Line-Art

<Gallery />


## Trigger words

You should use `Chinese line art` to trigger the image generation.


## Inference

```python
import torch
from diffusers import StableDiffusion3Pipeline # pip install diffusers>=0.31.0

pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3.5-large", torch_dtype=torch.bfloat16)
pipe.load_lora_weights("Shakker-Labs/SD3.5-LoRA-Chinese-Line-Art", weight_name="SD35-lora-Chinese-Line-Art.safetensors")
pipe.fuse_lora(lora_scale=1.0)
pipe.to("cuda")

prompt = "a boat on the river, mountain in the distance, Chinese line art"
negative_prompt = "(lowres, low quality, worst quality)"

image = pipe(prompt=prompt,
             negative_prompt=negative_prompt
             num_inference_steps=24, 
             guidance_scale=4.0,
             width=960, height=1280,
            ).images[0]
image.save(f"toy_example.jpg")
```