--- license: apache-2.0 base_model: cifope/whisper-small-wolof tags: - generated_from_trainer datasets: - fleurs metrics: - wer model-index: - name: whisper-small-wolof results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: fleurs type: fleurs config: wo_sn split: test args: wo_sn metrics: - name: Wer type: wer value: 64.90514905149053 --- # whisper-small-wolof This model is a fine-tuned version of [cifope/whisper-small-wolof](https://huggingface.co/cifope/whisper-small-wolof) on the fleurs dataset. It achieves the following results on the evaluation set: - Loss: 1.4778 - Wer: 64.9051 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 1.3863 | 1.4 | 50 | 1.4778 | 64.9051 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1