SergejSchweizer
commited on
Commit
·
8761ba6
1
Parent(s):
4775aac
Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +13 -13
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +2 -2
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -2.78 +/- 0.58
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d435cdd47a58165c139b2de9e265f93b114ddf4469918e5657700498db142d3
|
3 |
+
size 107756
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -41,12 +41,12 @@
|
|
41 |
"_np_random": null
|
42 |
},
|
43 |
"n_envs": 4,
|
44 |
-
"num_timesteps":
|
45 |
-
"_total_timesteps":
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
-
"start_time":
|
50 |
"learning_rate": 0.0007,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
@@ -55,10 +55,10 @@
|
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
-
":serialized:": "
|
59 |
-
"achieved_goal": "[[
|
60 |
-
"desired_goal": "[[
|
61 |
-
"observation": "[[
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,9 +66,9 @@
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
-
"desired_goal": "[[
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
@@ -77,13 +77,13 @@
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
-
"_n_updates":
|
87 |
"n_steps": 5,
|
88 |
"gamma": 0.99,
|
89 |
"gae_lambda": 1.0,
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fe61498cd30>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7fe614987a80>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
41 |
"_np_random": null
|
42 |
},
|
43 |
"n_envs": 4,
|
44 |
+
"num_timesteps": 1500000,
|
45 |
+
"_total_timesteps": 1500000,
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
+
"start_time": 1677747535383053395,
|
50 |
"learning_rate": 0.0007,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
|
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAAXfgPjdv5jwK3Rc/AXfgPjdv5jwK3Rc/AXfgPjdv5jwK3Rc/AXfgPjdv5jwK3Rc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAXGlUv3OrZD9k/JY+9D2KP67hxz97hY+/KeV9v9pMsz42bqo+oRcov772dz+2pb8/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAABd+A+N2/mPArdFz+Ko827Am1cO40Nu7sBd+A+N2/mPArdFz+Ko827Am1cO40Nu7sBd+A+N2/mPArdFz+Ko827Am1cO40Nu7sBd+A+N2/mPArdFz+Ko827Am1cO40Nu7uUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[0.43840793 0.0281292 0.59321654]\n [0.43840793 0.0281292 0.59321654]\n [0.43840793 0.0281292 0.59321654]\n [0.43840793 0.0281292 0.59321654]]",
|
60 |
+
"desired_goal": "[[-0.82973266 0.8932411 0.29489434]\n [ 1.0800157 1.5615747 -1.121261 ]\n [-0.99177796 0.3501957 0.3328721 ]\n [-0.65661055 0.96860874 1.4972446 ]]",
|
61 |
+
"observation": "[[ 0.43840793 0.0281292 0.59321654 -0.0062756 0.00336343 -0.0057084 ]\n [ 0.43840793 0.0281292 0.59321654 -0.0062756 0.00336343 -0.0057084 ]\n [ 0.43840793 0.0281292 0.59321654 -0.0062756 0.00336343 -0.0057084 ]\n [ 0.43840793 0.0281292 0.59321654 -0.0062756 0.00336343 -0.0057084 ]]"
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAtVi3PS+EFT5GUKo8h7B+Paj6AD4I/z4+0f0Rvmms8rx01pI+Z2PhuxVK7z3A4Fk+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[ 0.08952466 0.14601205 0.02079023]\n [ 0.06218007 0.12595618 0.18651974]\n [-0.1425698 -0.02962323 0.2867924 ]\n [-0.0068783 0.11684052 0.21277142]]",
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIlrTiGwo/AcCUhpRSlIwBbJRLMowBdJRHQKuc6cawUxp1fZQoaAZoCWgPQwgyOiAJ+5YFwJSGlFKUaBVLMmgWR0CrnK/V7Qb/dX2UKGgGaAloD0MIzehHwynzAMCUhpRSlGgVSzJoFkdAq5x/IXCTEHV9lChoBmgJaA9DCDYiGAeXDgPAlIaUUpRoFUsyaBZHQKucTt52Qnx1fZQoaAZoCWgPQwiJJlDEIiYFwJSGlFKUaBVLMmgWR0CrnbmgzxgBdX2UKGgGaAloD0MIHcwmwLCcAcCUhpRSlGgVSzJoFkdAq51/UF0PpnV9lChoBmgJaA9DCOdyg6EOiwDAlIaUUpRoFUsyaBZHQKudTnGKhtd1fZQoaAZoCWgPQwgLQQ5KmEkKwJSGlFKUaBVLMmgWR0CrnR4UN8VpdX2UKGgGaAloD0MImWclrfjGBsCUhpRSlGgVSzJoFkdAq55+dbxEv3V9lChoBmgJaA9DCNzawvNSMQjAlIaUUpRoFUsyaBZHQKueRKFIuoR1fZQoaAZoCWgPQwhZvi7Df7oEwJSGlFKUaBVLMmgWR0CrnhPM0P6LdX2UKGgGaAloD0MIaeVeYFZoEMCUhpRSlGgVSzJoFkdAq53jdP+GXXV9lChoBmgJaA9DCJ92+GuyJgPAlIaUUpRoFUsyaBZHQKufTu4wyqN1fZQoaAZoCWgPQwiI2cu20zYFwJSGlFKUaBVLMmgWR0CrnxSPEKmbdX2UKGgGaAloD0MIb7iP3Jo0AcCUhpRSlGgVSzJoFkdAq57jspoboHV9lChoBmgJaA9DCMBbIEHxIwPAlIaUUpRoFUsyaBZHQKues3HaN+91fZQoaAZoCWgPQwiemPViKGcDwJSGlFKUaBVLMmgWR0CroCJFCswMdX2UKGgGaAloD0MIYp6VtOK7BsCUhpRSlGgVSzJoFkdAq5/n4fwI+nV9lChoBmgJaA9DCJeOOc/YNwbAlIaUUpRoFUsyaBZHQKuft0wrUb11fZQoaAZoCWgPQwj6DKg3o6YOwJSGlFKUaBVLMmgWR0Crn4cKohpydX2UKGgGaAloD0MIQlw5e2d0/b+UhpRSlGgVSzJoFkdAq6EBddE9dXV9lChoBmgJaA9DCDTVk/lHnxbAlIaUUpRoFUsyaBZHQKugxwjMV1x1fZQoaAZoCWgPQwhQOLu1TAb+v5SGlFKUaBVLMmgWR0CroJY1YQrddX2UKGgGaAloD0MIWW5pNSSu+r+UhpRSlGgVSzJoFkdAq6BmGoJiRXV9lChoBmgJaA9DCOFGyhZJewnAlIaUUpRoFUsyaBZHQKuhxJaJQ+F1fZQoaAZoCWgPQwiyEvOspFUSwJSGlFKUaBVLMmgWR0CroYoouwotdX2UKGgGaAloD0MIpiiXxi9sEMCUhpRSlGgVSzJoFkdAq6FZRGc4HXV9lChoBmgJaA9DCECEuHL2DgjAlIaUUpRoFUsyaBZHQKuhKPYFqzt1fZQoaAZoCWgPQwgKgVziyMMTwJSGlFKUaBVLMmgWR0Croo3/Pw/gdX2UKGgGaAloD0MIJQLVP4iEBcCUhpRSlGgVSzJoFkdAq6JTux8lX3V9lChoBmgJaA9DCHv18dB3pxXAlIaUUpRoFUsyaBZHQKuiIvKU3XJ1fZQoaAZoCWgPQwgJ3pBGBU4MwJSGlFKUaBVLMmgWR0CrofLc0tROdX2UKGgGaAloD0MI2q1lMhxvBsCUhpRSlGgVSzJoFkdAq6NqU1Q663V9lChoBmgJaA9DCBB5y9WPbQvAlIaUUpRoFUsyaBZHQKujL/lyR0V1fZQoaAZoCWgPQwhpccYwJygQwJSGlFKUaBVLMmgWR0Crov8ZUDMedX2UKGgGaAloD0MIU7ExryOeGMCUhpRSlGgVSzJoFkdAq6LOzY287XV9lChoBmgJaA9DCLUaEvdY+v6/lIaUUpRoFUsyaBZHQKukOa2nbZh1fZQoaAZoCWgPQwgcCMkCJpAHwJSGlFKUaBVLMmgWR0Cro/987ZFodX2UKGgGaAloD0MInUfF/x0xD8CUhpRSlGgVSzJoFkdAq6POjj7yhHV9lChoBmgJaA9DCMEBLV3BVg3AlIaUUpRoFUsyaBZHQKujnjJdSl51fZQoaAZoCWgPQwieswWE1lMRwJSGlFKUaBVLMmgWR0CrpRDK5kLAdX2UKGgGaAloD0MIobyPozkSCMCUhpRSlGgVSzJoFkdAq6TWp0fYBnV9lChoBmgJaA9DCFg4SfPHlATAlIaUUpRoFUsyaBZHQKukpcclw991fZQoaAZoCWgPQwjWkLjH0gcGwJSGlFKUaBVLMmgWR0CrpHV5jYqYdX2UKGgGaAloD0MIC5bqAl4GAcCUhpRSlGgVSzJoFkdAq6Xj6P8ye3V9lChoBmgJaA9DCFThz/BmLQbAlIaUUpRoFUsyaBZHQKulqhLXcxl1fZQoaAZoCWgPQwirJoi6D6AIwJSGlFKUaBVLMmgWR0CrpXmXw9aEdX2UKGgGaAloD0MIezGUE+3qCcCUhpRSlGgVSzJoFkdAq6VJyCFsYXV9lChoBmgJaA9DCBjPoKF/whjAlIaUUpRoFUsyaBZHQKunIaZx7zF1fZQoaAZoCWgPQwhbXOMz2R8DwJSGlFKUaBVLMmgWR0Crpuf4IrvtdX2UKGgGaAloD0MISfYINUOKAsCUhpRSlGgVSzJoFkdAq6a3zWf9P3V9lChoBmgJaA9DCKt4I/PIPxHAlIaUUpRoFUsyaBZHQKumh+QU5+91fZQoaAZoCWgPQwjuk6MAUcARwJSGlFKUaBVLMmgWR0CrqE75uZTidX2UKGgGaAloD0MIP1OvWwRmDMCUhpRSlGgVSzJoFkdAq6gU/2TPjXV9lChoBmgJaA9DCNGUnX5Q9wbAlIaUUpRoFUsyaBZHQKun5JoTPB11fZQoaAZoCWgPQwhzEd+JWe8AwJSGlFKUaBVLMmgWR0Crp7S75Ec9dX2UKGgGaAloD0MIdXKG4o5XC8CUhpRSlGgVSzJoFkdAq6mMQGwA2nV9lChoBmgJaA9DCGK7e4DuqwjAlIaUUpRoFUsyaBZHQKupUrd30PJ1fZQoaAZoCWgPQwho5sk1BfIHwJSGlFKUaBVLMmgWR0CrqSJ1q33IdX2UKGgGaAloD0MINwAbECG+FsCUhpRSlGgVSzJoFkdAq6jynDR+jXV9lChoBmgJaA9DCFGDaRg+4gvAlIaUUpRoFUsyaBZHQKuq4xVyWAx1fZQoaAZoCWgPQwjc2sLzUpECwJSGlFKUaBVLMmgWR0Crqqkl3QlbdX2UKGgGaAloD0MIYoVbPpJSAcCUhpRSlGgVSzJoFkdAq6p41tO2zHV9lChoBmgJaA9DCMvZO6OtagjAlIaUUpRoFUsyaBZHQKuqSRL9MsZ1fZQoaAZoCWgPQwjkg57Nqu8UwJSGlFKUaBVLMmgWR0CrrCvovBacdX2UKGgGaAloD0MIQ6ooXmUNCsCUhpRSlGgVSzJoFkdAq6vyG1x82XV9lChoBmgJaA9DCFa8kXnkrwnAlIaUUpRoFUsyaBZHQKurwcTakAR1fZQoaAZoCWgPQwgBv0aSILwAwJSGlFKUaBVLMmgWR0Crq5H4oJAudX2UKGgGaAloD0MIUFPL1vqCBcCUhpRSlGgVSzJoFkdAq619elbeM3V9lChoBmgJaA9DCKBsyhXe5RDAlIaUUpRoFUsyaBZHQKutQ5Ke05V1fZQoaAZoCWgPQwjU1/M1y8UEwJSGlFKUaBVLMmgWR0CrrRNAcDKYdX2UKGgGaAloD0MISaDBps5DCMCUhpRSlGgVSzJoFkdAq6zjgEU0vXV9lChoBmgJaA9DCP1K58OzZAPAlIaUUpRoFUsyaBZHQKuudVdX1ap1fZQoaAZoCWgPQwh81jVaDhQCwJSGlFKUaBVLMmgWR0Crrjr3TNMXdX2UKGgGaAloD0MIHa7VHvbCD8CUhpRSlGgVSzJoFkdAq64KH0se4nV9lChoBmgJaA9DCAdfmEwV7AnAlIaUUpRoFUsyaBZHQKut2b6xgRd1fZQoaAZoCWgPQwhUOe0pOWcGwJSGlFKUaBVLMmgWR0Crr0pgssg/dX2UKGgGaAloD0MInieeswUEBcCUhpRSlGgVSzJoFkdAq68P/NqxknV9lChoBmgJaA9DCIlhhzHp7/i/lIaUUpRoFUsyaBZHQKuu3xp+MIh1fZQoaAZoCWgPQwhQxCKGHSYHwJSGlFKUaBVLMmgWR0Crrq7MottidX2UKGgGaAloD0MIt+9Rf73CA8CUhpRSlGgVSzJoFkdAq7AdYr8R+XV9lChoBmgJaA9DCGa/7nTnCQfAlIaUUpRoFUsyaBZHQKuv4wL3K0V1fZQoaAZoCWgPQwicpWQ5CaX8v5SGlFKUaBVLMmgWR0Crr7Ina37UdX2UKGgGaAloD0MIf2q8dJPYBMCUhpRSlGgVSzJoFkdAq6+B9iMHbHV9lChoBmgJaA9DCGX8+4wLRw3AlIaUUpRoFUsyaBZHQKuw5yiEg4h1fZQoaAZoCWgPQwgBTBk4oMUBwJSGlFKUaBVLMmgWR0CrsKzUiILxdX2UKGgGaAloD0MIdowrLo6qCMCUhpRSlGgVSzJoFkdAq7B8PMB6r3V9lChoBmgJaA9DCAFMGTig5QTAlIaUUpRoFUsyaBZHQKuwTGhEjPh1fZQoaAZoCWgPQwh+kGXBxB8IwJSGlFKUaBVLMmgWR0CrsbR8+iaidX2UKGgGaAloD0MIjCyZY3mXDMCUhpRSlGgVSzJoFkdAq7F6HM2WIHV9lChoBmgJaA9DCJXurrMhnwvAlIaUUpRoFUsyaBZHQKuxST7EYO51fZQoaAZoCWgPQwiDF30FaeYBwJSGlFKUaBVLMmgWR0CrsRkFGG21dX2UKGgGaAloD0MIidS0i2mGCsCUhpRSlGgVSzJoFkdAq7KJ+z+m33V9lChoBmgJaA9DCCrHZHH/MQLAlIaUUpRoFUsyaBZHQKuyT5uZThp1fZQoaAZoCWgPQwjZe/FFe3z3v5SGlFKUaBVLMmgWR0Crsh60pmVadX2UKGgGaAloD0MIRE/KpIb2BcCUhpRSlGgVSzJoFkdAq7HvEn9ehXV9lChoBmgJaA9DCNODglK0MgTAlIaUUpRoFUsyaBZHQKuzVpaA4GV1fZQoaAZoCWgPQwirr64K1IIAwJSGlFKUaBVLMmgWR0Crsxw2ETQFdX2UKGgGaAloD0MIea9amfCL9r+UhpRSlGgVSzJoFkdAq7LrbeuV5nV9lChoBmgJaA9DCOmY84x9KRLAlIaUUpRoFUsyaBZHQKuyuxM36yl1ZS4="
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
+
"_n_updates": 75000,
|
87 |
"n_steps": 5,
|
88 |
"gamma": 0.99,
|
89 |
"gae_lambda": 1.0,
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44606
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:81dd8c1c7605acae55c6eda1dcf04ab4d4d08ebf00ce7fed20f25dcfb5eba654
|
3 |
size 44606
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 45886
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4cfe7bbd3c61cdaaf129a6ac62cadf6bfbce71bd55fd7016ffd3be06742d5124
|
3 |
size 45886
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f19dedb0dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f19dedaab40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677681941882001986, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA5Hu2PC2gCT4RLUA+QjxWvSs23jwHxKs97lsnPKUd/D3ImYM9Ga22vUFS5rzjoOM9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.02227587 0.13440008 0.18767191]\n [-0.05230356 0.02712544 0.08386999]\n [ 0.01021479 0.12310342 0.06425816]\n [-0.08919735 -0.02811539 0.11114671]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA8/khvUbjiL14LIo+K1E/vPo5lT1yXnE9pHK0PSRA7T1i4L47j6AhvTmTsT0skBQ9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.03954501 -0.06683974 0.26987052]\n [-0.01167707 0.07286449 0.05892796]\n [ 0.08810928 0.11584499 0.00582509]\n [-0.03945976 0.08670659 0.03627031]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIrMjogCT8HMCUhpRSlIwBbJRLMowBdJRHQL0K8HG0eEJ1fZQoaAZoCWgPQwjGbworFWwiwJSGlFKUaBVLMmgWR0C9CqhbbDdhdX2UKGgGaAloD0MIuf3yyYoJJMCUhpRSlGgVSzJoFkdAvQpM0sOG03V9lChoBmgJaA9DCBPx1vm3CyzAlIaUUpRoFUsyaBZHQL0J9DNyHVR1fZQoaAZoCWgPQwgRkC+hgrsrwJSGlFKUaBVLMmgWR0C9C4cbaRISdX2UKGgGaAloD0MILnb7rDKTIsCUhpRSlGgVSzJoFkdAvQs/ECNjsnV9lChoBmgJaA9DCLB0PjxLACnAlIaUUpRoFUsyaBZHQL0K43yqdYp1fZQoaAZoCWgPQwhBuW3fo34qwJSGlFKUaBVLMmgWR0C9Coq4MF2WdX2UKGgGaAloD0MIP28qUmHUM8CUhpRSlGgVSzJoFkdAvQwRnFo+OnV9lChoBmgJaA9DCI7KTdTSNCvAlIaUUpRoFUsyaBZHQL0LyZk078x1fZQoaAZoCWgPQwiVu8/x0QIzwJSGlFKUaBVLMmgWR0C9C23y/bj+dX2UKGgGaAloD0MIAoI5evy+H8CUhpRSlGgVSzJoFkdAvQsVLEk0JnV9lChoBmgJaA9DCH9t/fSfTSbAlIaUUpRoFUsyaBZHQL0MpGjbi6x1fZQoaAZoCWgPQwgoQ1VMpXc1wJSGlFKUaBVLMmgWR0C9DFx06o2odX2UKGgGaAloD0MITBk4oKWzJcCUhpRSlGgVSzJoFkdAvQwA4hllLHV9lChoBmgJaA9DCOdQhqqYIirAlIaUUpRoFUsyaBZHQL0LqB1s+FF1fZQoaAZoCWgPQwjCobd4eMctwJSGlFKUaBVLMmgWR0C9DTlPFefJdX2UKGgGaAloD0MIfhzNkZVPJMCUhpRSlGgVSzJoFkdAvQzxOP/7znV9lChoBmgJaA9DCC/4NCcvOinAlIaUUpRoFUsyaBZHQL0MlZTAFgV1fZQoaAZoCWgPQwjmlettM4UjwJSGlFKUaBVLMmgWR0C9DDzrRjSYdX2UKGgGaAloD0MIqI3qdCBzMsCUhpRSlGgVSzJoFkdAvQ3LixVyWHV9lChoBmgJaA9DCJxNRwA30yzAlIaUUpRoFUsyaBZHQL0Ng3FUADJ1fZQoaAZoCWgPQwjYRdEDH+MmwJSGlFKUaBVLMmgWR0C9DSfQF9rodX2UKGgGaAloD0MIqu/8ogQNIMCUhpRSlGgVSzJoFkdAvQzPCiyprHV9lChoBmgJaA9DCEtWRbjJ+CTAlIaUUpRoFUsyaBZHQL0OYb9ZRsN1fZQoaAZoCWgPQwgHmzqPik8lwJSGlFKUaBVLMmgWR0C9DhnfIjnndX2UKGgGaAloD0MIx0eLM4ZRJMCUhpRSlGgVSzJoFkdAvQ2+OwPiDXV9lChoBmgJaA9DCPaaHhSUejDAlIaUUpRoFUsyaBZHQL0NZYm9g4R1fZQoaAZoCWgPQwhG7BNAMWIbwJSGlFKUaBVLMmgWR0C9DwRDw6QvdX2UKGgGaAloD0MI1NaIYBzMMcCUhpRSlGgVSzJoFkdAvQ68o3JgcHV9lChoBmgJaA9DCIOHad/cLyXAlIaUUpRoFUsyaBZHQL0OYWweNkx1fZQoaAZoCWgPQwiAt0CC4v8hwJSGlFKUaBVLMmgWR0C9Dgl8Ti84dX2UKGgGaAloD0MIZ7lsdM53KsCUhpRSlGgVSzJoFkdAvQ/rsniNsHV9lChoBmgJaA9DCJMehlYnlyXAlIaUUpRoFUsyaBZHQL0PpABT4tZ1fZQoaAZoCWgPQwgB+RIqOGwvwJSGlFKUaBVLMmgWR0C9D0jCP6sRdX2UKGgGaAloD0MI1ZY6yOsRJsCUhpRSlGgVSzJoFkdAvQ7wXsPatnV9lChoBmgJaA9DCMmRzsDI+yXAlIaUUpRoFUsyaBZHQL0Q1Nd7fHh1fZQoaAZoCWgPQwiQLcvXZfAiwJSGlFKUaBVLMmgWR0C9EI0ZvUBodX2UKGgGaAloD0MIMJ5BQ//ULsCUhpRSlGgVSzJoFkdAvRAx6By0bHV9lChoBmgJaA9DCHTqymd5hjDAlIaUUpRoFUsyaBZHQL0P2YMfA9F1fZQoaAZoCWgPQwgEIVnABAYtwJSGlFKUaBVLMmgWR0C9EcRKg7HRdX2UKGgGaAloD0MIjsh3KXXBJcCUhpRSlGgVSzJoFkdAvRF8nc+JQHV9lChoBmgJaA9DCOgWuhKBkiPAlIaUUpRoFUsyaBZHQL0RIWKuSwJ1fZQoaAZoCWgPQwj60tufiy4rwJSGlFKUaBVLMmgWR0C9EMkg8r7PdX2UKGgGaAloD0MIos9HGXG5LsCUhpRSlGgVSzJoFkdAvRK6msNlRXV9lChoBmgJaA9DCNzWFp6XcizAlIaUUpRoFUsyaBZHQL0ScwhnrY51fZQoaAZoCWgPQwgXLNUFvBQpwJSGlFKUaBVLMmgWR0C9EhfdEb5udX2UKGgGaAloD0MItU/HYwZaJcCUhpRSlGgVSzJoFkdAvRG/lhgE2nV9lChoBmgJaA9DCIF2hxQDIDHAlIaUUpRoFUsyaBZHQL0Ts+FDfFd1fZQoaAZoCWgPQwjkLy3qk/QswJSGlFKUaBVLMmgWR0C9E2wte2NOdX2UKGgGaAloD0MIsYo3Mo9cJsCUhpRSlGgVSzJoFkdAvRMQ9Oh0yXV9lChoBmgJaA9DCFx2iH/Yki3AlIaUUpRoFUsyaBZHQL0SuN7Bwdd1fZQoaAZoCWgPQwjH155ZEsAtwJSGlFKUaBVLMmgWR0C9FLIkVvdedX2UKGgGaAloD0MIaeId4EnLM8CUhpRSlGgVSzJoFkdAvRRqxLTQV3V9lChoBmgJaA9DCGpnmNpShzLAlIaUUpRoFUsyaBZHQL0UD8OkLx91fZQoaAZoCWgPQwhLAP4pVaIkwJSGlFKUaBVLMmgWR0C9E7eQQtjDdX2UKGgGaAloD0MI33AfuTW5LsCUhpRSlGgVSzJoFkdAvRWtUkv9L3V9lChoBmgJaA9DCDZ0sz9QliTAlIaUUpRoFUsyaBZHQL0VZVsDW9V1fZQoaAZoCWgPQwjsUbgehUMpwJSGlFKUaBVLMmgWR0C9FQnEAHVxdX2UKGgGaAloD0MI2iCTjJx5McCUhpRSlGgVSzJoFkdAvRSw/wAlwHV9lChoBmgJaA9DCNeFH5xPXS7AlIaUUpRoFUsyaBZHQL0WRsUqQRx1fZQoaAZoCWgPQwh/2T15WCAlwJSGlFKUaBVLMmgWR0C9Ff7zK9wndX2UKGgGaAloD0MIOslWl1OCLMCUhpRSlGgVSzJoFkdAvRWjTqjaf3V9lChoBmgJaA9DCM5xbhPurSLAlIaUUpRoFUsyaBZHQL0VSqmTC+F1fZQoaAZoCWgPQwiQiCmRRLcgwJSGlFKUaBVLMmgWR0C9FtcHnlnzdX2UKGgGaAloD0MIuJIdG4H4LcCUhpRSlGgVSzJoFkdAvRaPBUJfIHV9lChoBmgJaA9DCDboS29/BifAlIaUUpRoFUsyaBZHQL0WM2PDHfd1fZQoaAZoCWgPQwjG/UemQz8hwJSGlFKUaBVLMmgWR0C9FdqlxffGdX2UKGgGaAloD0MILliqC3gBKMCUhpRSlGgVSzJoFkdAvRdtYLb5/XV9lChoBmgJaA9DCK702mysvC7AlIaUUpRoFUsyaBZHQL0XJaEBbOh1fZQoaAZoCWgPQwjx9EpZhnAowJSGlFKUaBVLMmgWR0C9FspHNHH4dX2UKGgGaAloD0MI0VlmEYo1KMCUhpRSlGgVSzJoFkdAvRZxvl2eQXV9lChoBmgJaA9DCG7gDtQpzxfAlIaUUpRoFUsyaBZHQL0YAoZQ53l1fZQoaAZoCWgPQwgIAI49ex4lwJSGlFKUaBVLMmgWR0C9F7qhQFcIdX2UKGgGaAloD0MIZjBGJAo1JsCUhpRSlGgVSzJoFkdAvRdfARChOHV9lChoBmgJaA9DCBuhn6nXfSrAlIaUUpRoFUsyaBZHQL0XBko4MnZ1fZQoaAZoCWgPQwh1yw7xD/MgwJSGlFKUaBVLMmgWR0C9GJHS0BwNdX2UKGgGaAloD0MIrabria7zJsCUhpRSlGgVSzJoFkdAvRhJxGUfP3V9lChoBmgJaA9DCCy69ZoePCDAlIaUUpRoFUsyaBZHQL0X7jhky1x1fZQoaAZoCWgPQwiKkpBI26AjwJSGlFKUaBVLMmgWR0C9F5V81Gb1dX2UKGgGaAloD0MIf6KyYU1lLMCUhpRSlGgVSzJoFkdAvRko2GZeA3V9lChoBmgJaA9DCI9U3/lFwSbAlIaUUpRoFUsyaBZHQL0Y4M7EHdJ1fZQoaAZoCWgPQwiUiVsFMaAdwJSGlFKUaBVLMmgWR0C9GIUwSJ0odX2UKGgGaAloD0MIV+vE5XjVH8CUhpRSlGgVSzJoFkdAvRgsaxX4kHV9lChoBmgJaA9DCLaGUnsRXRnAlIaUUpRoFUsyaBZHQL0ZxQBgeBB1fZQoaAZoCWgPQwi4k4jwLyInwJSGlFKUaBVLMmgWR0C9GXz9sJpndX2UKGgGaAloD0MIDr4wmSoIMcCUhpRSlGgVSzJoFkdAvRkhYU34sXV9lChoBmgJaA9DCC6sG++OXDLAlIaUUpRoFUsyaBZHQL0YyJgsshB1fZQoaAZoCWgPQwhW0opvKCwuwJSGlFKUaBVLMmgWR0C9GlV+uvECdX2UKGgGaAloD0MIrfiGwmd7HMCUhpRSlGgVSzJoFkdAvRoNZcLSeHV9lChoBmgJaA9DCNhkjXqIZiPAlIaUUpRoFUsyaBZHQL0Zsc2R7qp1fZQoaAZoCWgPQwgm4NdIErQbwJSGlFKUaBVLMmgWR0C9GVkknkT6dX2UKGgGaAloD0MII9xkVBneJcCUhpRSlGgVSzJoFkdAvRrmCZnctXV9lChoBmgJaA9DCJWbqKW55SfAlIaUUpRoFUsyaBZHQL0angEEC/51fZQoaAZoCWgPQwhws3ixMOwiwJSGlFKUaBVLMmgWR0C9GkJimVJMdX2UKGgGaAloD0MI6fNRRlzYLsCUhpRSlGgVSzJoFkdAvRnple4TbnV9lChoBmgJaA9DCJZ6FoTyejTAlIaUUpRoFUsyaBZHQL0bewPAfuF1fZQoaAZoCWgPQwisOxbbpCohwJSGlFKUaBVLMmgWR0C9GzL04BFNdX2UKGgGaAloD0MI3XniOVvoMcCUhpRSlGgVSzJoFkdAvRrXaQFLWnV9lChoBmgJaA9DCGeZRSi2qiLAlIaUUpRoFUsyaBZHQL0afsANoal1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fe61498cd30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe614987a80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1500000, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677747535383053395, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAAXfgPjdv5jwK3Rc/AXfgPjdv5jwK3Rc/AXfgPjdv5jwK3Rc/AXfgPjdv5jwK3Rc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAXGlUv3OrZD9k/JY+9D2KP67hxz97hY+/KeV9v9pMsz42bqo+oRcov772dz+2pb8/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAABd+A+N2/mPArdFz+Ko827Am1cO40Nu7sBd+A+N2/mPArdFz+Ko827Am1cO40Nu7sBd+A+N2/mPArdFz+Ko827Am1cO40Nu7sBd+A+N2/mPArdFz+Ko827Am1cO40Nu7uUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.43840793 0.0281292 0.59321654]\n [0.43840793 0.0281292 0.59321654]\n [0.43840793 0.0281292 0.59321654]\n [0.43840793 0.0281292 0.59321654]]", "desired_goal": "[[-0.82973266 0.8932411 0.29489434]\n [ 1.0800157 1.5615747 -1.121261 ]\n [-0.99177796 0.3501957 0.3328721 ]\n [-0.65661055 0.96860874 1.4972446 ]]", "observation": "[[ 0.43840793 0.0281292 0.59321654 -0.0062756 0.00336343 -0.0057084 ]\n [ 0.43840793 0.0281292 0.59321654 -0.0062756 0.00336343 -0.0057084 ]\n [ 0.43840793 0.0281292 0.59321654 -0.0062756 0.00336343 -0.0057084 ]\n [ 0.43840793 0.0281292 0.59321654 -0.0062756 0.00336343 -0.0057084 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAtVi3PS+EFT5GUKo8h7B+Paj6AD4I/z4+0f0Rvmms8rx01pI+Z2PhuxVK7z3A4Fk+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.08952466 0.14601205 0.02079023]\n [ 0.06218007 0.12595618 0.18651974]\n [-0.1425698 -0.02962323 0.2867924 ]\n [-0.0068783 0.11684052 0.21277142]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIlrTiGwo/AcCUhpRSlIwBbJRLMowBdJRHQKuc6cawUxp1fZQoaAZoCWgPQwgyOiAJ+5YFwJSGlFKUaBVLMmgWR0CrnK/V7Qb/dX2UKGgGaAloD0MIzehHwynzAMCUhpRSlGgVSzJoFkdAq5x/IXCTEHV9lChoBmgJaA9DCDYiGAeXDgPAlIaUUpRoFUsyaBZHQKucTt52Qnx1fZQoaAZoCWgPQwiJJlDEIiYFwJSGlFKUaBVLMmgWR0CrnbmgzxgBdX2UKGgGaAloD0MIHcwmwLCcAcCUhpRSlGgVSzJoFkdAq51/UF0PpnV9lChoBmgJaA9DCOdyg6EOiwDAlIaUUpRoFUsyaBZHQKudTnGKhtd1fZQoaAZoCWgPQwgLQQ5KmEkKwJSGlFKUaBVLMmgWR0CrnR4UN8VpdX2UKGgGaAloD0MImWclrfjGBsCUhpRSlGgVSzJoFkdAq55+dbxEv3V9lChoBmgJaA9DCNzawvNSMQjAlIaUUpRoFUsyaBZHQKueRKFIuoR1fZQoaAZoCWgPQwhZvi7Df7oEwJSGlFKUaBVLMmgWR0CrnhPM0P6LdX2UKGgGaAloD0MIaeVeYFZoEMCUhpRSlGgVSzJoFkdAq53jdP+GXXV9lChoBmgJaA9DCJ92+GuyJgPAlIaUUpRoFUsyaBZHQKufTu4wyqN1fZQoaAZoCWgPQwiI2cu20zYFwJSGlFKUaBVLMmgWR0CrnxSPEKmbdX2UKGgGaAloD0MIb7iP3Jo0AcCUhpRSlGgVSzJoFkdAq57jspoboHV9lChoBmgJaA9DCMBbIEHxIwPAlIaUUpRoFUsyaBZHQKues3HaN+91fZQoaAZoCWgPQwiemPViKGcDwJSGlFKUaBVLMmgWR0CroCJFCswMdX2UKGgGaAloD0MIYp6VtOK7BsCUhpRSlGgVSzJoFkdAq5/n4fwI+nV9lChoBmgJaA9DCJeOOc/YNwbAlIaUUpRoFUsyaBZHQKuft0wrUb11fZQoaAZoCWgPQwj6DKg3o6YOwJSGlFKUaBVLMmgWR0Crn4cKohpydX2UKGgGaAloD0MIQlw5e2d0/b+UhpRSlGgVSzJoFkdAq6EBddE9dXV9lChoBmgJaA9DCDTVk/lHnxbAlIaUUpRoFUsyaBZHQKugxwjMV1x1fZQoaAZoCWgPQwhQOLu1TAb+v5SGlFKUaBVLMmgWR0CroJY1YQrddX2UKGgGaAloD0MIWW5pNSSu+r+UhpRSlGgVSzJoFkdAq6BmGoJiRXV9lChoBmgJaA9DCOFGyhZJewnAlIaUUpRoFUsyaBZHQKuhxJaJQ+F1fZQoaAZoCWgPQwiyEvOspFUSwJSGlFKUaBVLMmgWR0CroYoouwotdX2UKGgGaAloD0MIpiiXxi9sEMCUhpRSlGgVSzJoFkdAq6FZRGc4HXV9lChoBmgJaA9DCECEuHL2DgjAlIaUUpRoFUsyaBZHQKuhKPYFqzt1fZQoaAZoCWgPQwgKgVziyMMTwJSGlFKUaBVLMmgWR0Croo3/Pw/gdX2UKGgGaAloD0MIJQLVP4iEBcCUhpRSlGgVSzJoFkdAq6JTux8lX3V9lChoBmgJaA9DCHv18dB3pxXAlIaUUpRoFUsyaBZHQKuiIvKU3XJ1fZQoaAZoCWgPQwgJ3pBGBU4MwJSGlFKUaBVLMmgWR0CrofLc0tROdX2UKGgGaAloD0MI2q1lMhxvBsCUhpRSlGgVSzJoFkdAq6NqU1Q663V9lChoBmgJaA9DCBB5y9WPbQvAlIaUUpRoFUsyaBZHQKujL/lyR0V1fZQoaAZoCWgPQwhpccYwJygQwJSGlFKUaBVLMmgWR0Crov8ZUDMedX2UKGgGaAloD0MIU7ExryOeGMCUhpRSlGgVSzJoFkdAq6LOzY287XV9lChoBmgJaA9DCLUaEvdY+v6/lIaUUpRoFUsyaBZHQKukOa2nbZh1fZQoaAZoCWgPQwgcCMkCJpAHwJSGlFKUaBVLMmgWR0Cro/987ZFodX2UKGgGaAloD0MInUfF/x0xD8CUhpRSlGgVSzJoFkdAq6POjj7yhHV9lChoBmgJaA9DCMEBLV3BVg3AlIaUUpRoFUsyaBZHQKujnjJdSl51fZQoaAZoCWgPQwieswWE1lMRwJSGlFKUaBVLMmgWR0CrpRDK5kLAdX2UKGgGaAloD0MIobyPozkSCMCUhpRSlGgVSzJoFkdAq6TWp0fYBnV9lChoBmgJaA9DCFg4SfPHlATAlIaUUpRoFUsyaBZHQKukpcclw991fZQoaAZoCWgPQwjWkLjH0gcGwJSGlFKUaBVLMmgWR0CrpHV5jYqYdX2UKGgGaAloD0MIC5bqAl4GAcCUhpRSlGgVSzJoFkdAq6Xj6P8ye3V9lChoBmgJaA9DCFThz/BmLQbAlIaUUpRoFUsyaBZHQKulqhLXcxl1fZQoaAZoCWgPQwirJoi6D6AIwJSGlFKUaBVLMmgWR0CrpXmXw9aEdX2UKGgGaAloD0MIezGUE+3qCcCUhpRSlGgVSzJoFkdAq6VJyCFsYXV9lChoBmgJaA9DCBjPoKF/whjAlIaUUpRoFUsyaBZHQKunIaZx7zF1fZQoaAZoCWgPQwhbXOMz2R8DwJSGlFKUaBVLMmgWR0Crpuf4IrvtdX2UKGgGaAloD0MISfYINUOKAsCUhpRSlGgVSzJoFkdAq6a3zWf9P3V9lChoBmgJaA9DCKt4I/PIPxHAlIaUUpRoFUsyaBZHQKumh+QU5+91fZQoaAZoCWgPQwjuk6MAUcARwJSGlFKUaBVLMmgWR0CrqE75uZTidX2UKGgGaAloD0MIP1OvWwRmDMCUhpRSlGgVSzJoFkdAq6gU/2TPjXV9lChoBmgJaA9DCNGUnX5Q9wbAlIaUUpRoFUsyaBZHQKun5JoTPB11fZQoaAZoCWgPQwhzEd+JWe8AwJSGlFKUaBVLMmgWR0Crp7S75Ec9dX2UKGgGaAloD0MIdXKG4o5XC8CUhpRSlGgVSzJoFkdAq6mMQGwA2nV9lChoBmgJaA9DCGK7e4DuqwjAlIaUUpRoFUsyaBZHQKupUrd30PJ1fZQoaAZoCWgPQwho5sk1BfIHwJSGlFKUaBVLMmgWR0CrqSJ1q33IdX2UKGgGaAloD0MINwAbECG+FsCUhpRSlGgVSzJoFkdAq6jynDR+jXV9lChoBmgJaA9DCFGDaRg+4gvAlIaUUpRoFUsyaBZHQKuq4xVyWAx1fZQoaAZoCWgPQwjc2sLzUpECwJSGlFKUaBVLMmgWR0Crqqkl3QlbdX2UKGgGaAloD0MIYoVbPpJSAcCUhpRSlGgVSzJoFkdAq6p41tO2zHV9lChoBmgJaA9DCMvZO6OtagjAlIaUUpRoFUsyaBZHQKuqSRL9MsZ1fZQoaAZoCWgPQwjkg57Nqu8UwJSGlFKUaBVLMmgWR0CrrCvovBacdX2UKGgGaAloD0MIQ6ooXmUNCsCUhpRSlGgVSzJoFkdAq6vyG1x82XV9lChoBmgJaA9DCFa8kXnkrwnAlIaUUpRoFUsyaBZHQKurwcTakAR1fZQoaAZoCWgPQwgBv0aSILwAwJSGlFKUaBVLMmgWR0Crq5H4oJAudX2UKGgGaAloD0MIUFPL1vqCBcCUhpRSlGgVSzJoFkdAq619elbeM3V9lChoBmgJaA9DCKBsyhXe5RDAlIaUUpRoFUsyaBZHQKutQ5Ke05V1fZQoaAZoCWgPQwjU1/M1y8UEwJSGlFKUaBVLMmgWR0CrrRNAcDKYdX2UKGgGaAloD0MISaDBps5DCMCUhpRSlGgVSzJoFkdAq6zjgEU0vXV9lChoBmgJaA9DCP1K58OzZAPAlIaUUpRoFUsyaBZHQKuudVdX1ap1fZQoaAZoCWgPQwh81jVaDhQCwJSGlFKUaBVLMmgWR0Crrjr3TNMXdX2UKGgGaAloD0MIHa7VHvbCD8CUhpRSlGgVSzJoFkdAq64KH0se4nV9lChoBmgJaA9DCAdfmEwV7AnAlIaUUpRoFUsyaBZHQKut2b6xgRd1fZQoaAZoCWgPQwhUOe0pOWcGwJSGlFKUaBVLMmgWR0Crr0pgssg/dX2UKGgGaAloD0MInieeswUEBcCUhpRSlGgVSzJoFkdAq68P/NqxknV9lChoBmgJaA9DCIlhhzHp7/i/lIaUUpRoFUsyaBZHQKuu3xp+MIh1fZQoaAZoCWgPQwhQxCKGHSYHwJSGlFKUaBVLMmgWR0Crrq7MottidX2UKGgGaAloD0MIt+9Rf73CA8CUhpRSlGgVSzJoFkdAq7AdYr8R+XV9lChoBmgJaA9DCGa/7nTnCQfAlIaUUpRoFUsyaBZHQKuv4wL3K0V1fZQoaAZoCWgPQwicpWQ5CaX8v5SGlFKUaBVLMmgWR0Crr7Ina37UdX2UKGgGaAloD0MIf2q8dJPYBMCUhpRSlGgVSzJoFkdAq6+B9iMHbHV9lChoBmgJaA9DCGX8+4wLRw3AlIaUUpRoFUsyaBZHQKuw5yiEg4h1fZQoaAZoCWgPQwgBTBk4oMUBwJSGlFKUaBVLMmgWR0CrsKzUiILxdX2UKGgGaAloD0MIdowrLo6qCMCUhpRSlGgVSzJoFkdAq7B8PMB6r3V9lChoBmgJaA9DCAFMGTig5QTAlIaUUpRoFUsyaBZHQKuwTGhEjPh1fZQoaAZoCWgPQwh+kGXBxB8IwJSGlFKUaBVLMmgWR0CrsbR8+iaidX2UKGgGaAloD0MIjCyZY3mXDMCUhpRSlGgVSzJoFkdAq7F6HM2WIHV9lChoBmgJaA9DCJXurrMhnwvAlIaUUpRoFUsyaBZHQKuxST7EYO51fZQoaAZoCWgPQwiDF30FaeYBwJSGlFKUaBVLMmgWR0CrsRkFGG21dX2UKGgGaAloD0MIidS0i2mGCsCUhpRSlGgVSzJoFkdAq7KJ+z+m33V9lChoBmgJaA9DCCrHZHH/MQLAlIaUUpRoFUsyaBZHQKuyT5uZThp1fZQoaAZoCWgPQwjZe/FFe3z3v5SGlFKUaBVLMmgWR0Crsh60pmVadX2UKGgGaAloD0MIRE/KpIb2BcCUhpRSlGgVSzJoFkdAq7HvEn9ehXV9lChoBmgJaA9DCNODglK0MgTAlIaUUpRoFUsyaBZHQKuzVpaA4GV1fZQoaAZoCWgPQwirr64K1IIAwJSGlFKUaBVLMmgWR0Crsxw2ETQFdX2UKGgGaAloD0MIea9amfCL9r+UhpRSlGgVSzJoFkdAq7LrbeuV5nV9lChoBmgJaA9DCOmY84x9KRLAlIaUUpRoFUsyaBZHQKuyuxM36yl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 75000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -2.783884500712156, "std_reward": 0.5819206577828875, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-02T10:04:30.683061"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2fee3c5c3c52110c6d11ae0f1d1d396a790c8a032792f97f9000d57607906178
|
3 |
+
size 3056
|