SenhorDasMoscas
commited on
Add new SentenceTransformer model.
Browse files- 1_Pooling/config.json +10 -0
- README.md +758 -0
- config.json +32 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +65 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1024,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,758 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- generated_from_trainer
|
7 |
+
- dataset_size:18623
|
8 |
+
- loss:CosineSimilarityLoss
|
9 |
+
base_model: neuralmind/bert-large-portuguese-cased
|
10 |
+
widget:
|
11 |
+
- source_sentence: maquina cafe expresso cadence
|
12 |
+
sentences:
|
13 |
+
- beleza autocuidado
|
14 |
+
- eletrodomestico
|
15 |
+
- produto alimenticio basico
|
16 |
+
- source_sentence: alicate corte
|
17 |
+
sentences:
|
18 |
+
- esporte fitness
|
19 |
+
- brinquedo jogo educativo
|
20 |
+
- item adulto brinquedo sexual
|
21 |
+
- source_sentence: luminaria neon
|
22 |
+
sentences:
|
23 |
+
- casa decoracao
|
24 |
+
- brinquedo jogo educativo
|
25 |
+
- produto pet animal domestico
|
26 |
+
- source_sentence: sofa 3 lugar
|
27 |
+
sentences:
|
28 |
+
- produto pet animal domestico
|
29 |
+
- casa decoracao
|
30 |
+
- papelaria escritorio
|
31 |
+
- source_sentence: cobertor pelucia
|
32 |
+
sentences:
|
33 |
+
- joia bijuterio
|
34 |
+
- servico reparo eletronico
|
35 |
+
- moda acessorio
|
36 |
+
pipeline_tag: sentence-similarity
|
37 |
+
library_name: sentence-transformers
|
38 |
+
metrics:
|
39 |
+
- pearson_cosine
|
40 |
+
- spearman_cosine
|
41 |
+
model-index:
|
42 |
+
- name: SentenceTransformer based on neuralmind/bert-large-portuguese-cased
|
43 |
+
results:
|
44 |
+
- task:
|
45 |
+
type: semantic-similarity
|
46 |
+
name: Semantic Similarity
|
47 |
+
dataset:
|
48 |
+
name: eval similarity
|
49 |
+
type: eval-similarity
|
50 |
+
metrics:
|
51 |
+
- type: pearson_cosine
|
52 |
+
value: 0.9058132977545096
|
53 |
+
name: Pearson Cosine
|
54 |
+
- type: spearman_cosine
|
55 |
+
value: 0.8399056573091899
|
56 |
+
name: Spearman Cosine
|
57 |
+
---
|
58 |
+
|
59 |
+
# SentenceTransformer based on neuralmind/bert-large-portuguese-cased
|
60 |
+
|
61 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [neuralmind/bert-large-portuguese-cased](https://huggingface.co/neuralmind/bert-large-portuguese-cased). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
62 |
+
|
63 |
+
## Model Details
|
64 |
+
|
65 |
+
### Model Description
|
66 |
+
- **Model Type:** Sentence Transformer
|
67 |
+
- **Base model:** [neuralmind/bert-large-portuguese-cased](https://huggingface.co/neuralmind/bert-large-portuguese-cased) <!-- at revision aa302f6ea73b759f7df9cad58bd272127b67ec28 -->
|
68 |
+
- **Maximum Sequence Length:** 512 tokens
|
69 |
+
- **Output Dimensionality:** 1024 dimensions
|
70 |
+
- **Similarity Function:** Cosine Similarity
|
71 |
+
<!-- - **Training Dataset:** Unknown -->
|
72 |
+
<!-- - **Language:** Unknown -->
|
73 |
+
<!-- - **License:** Unknown -->
|
74 |
+
|
75 |
+
### Model Sources
|
76 |
+
|
77 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
78 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
79 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
80 |
+
|
81 |
+
### Full Model Architecture
|
82 |
+
|
83 |
+
```
|
84 |
+
SentenceTransformer(
|
85 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
86 |
+
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
87 |
+
)
|
88 |
+
```
|
89 |
+
|
90 |
+
## Usage
|
91 |
+
|
92 |
+
### Direct Usage (Sentence Transformers)
|
93 |
+
|
94 |
+
First install the Sentence Transformers library:
|
95 |
+
|
96 |
+
```bash
|
97 |
+
pip install -U sentence-transformers
|
98 |
+
```
|
99 |
+
|
100 |
+
Then you can load this model and run inference.
|
101 |
+
```python
|
102 |
+
from sentence_transformers import SentenceTransformer
|
103 |
+
|
104 |
+
# Download from the 🤗 Hub
|
105 |
+
model = SentenceTransformer("SenhorDasMoscas/bert-ptbr-e3-lr0.0001-04-01-2025")
|
106 |
+
# Run inference
|
107 |
+
sentences = [
|
108 |
+
'cobertor pelucia',
|
109 |
+
'moda acessorio',
|
110 |
+
'servico reparo eletronico',
|
111 |
+
]
|
112 |
+
embeddings = model.encode(sentences)
|
113 |
+
print(embeddings.shape)
|
114 |
+
# [3, 1024]
|
115 |
+
|
116 |
+
# Get the similarity scores for the embeddings
|
117 |
+
similarities = model.similarity(embeddings, embeddings)
|
118 |
+
print(similarities.shape)
|
119 |
+
# [3, 3]
|
120 |
+
```
|
121 |
+
|
122 |
+
<!--
|
123 |
+
### Direct Usage (Transformers)
|
124 |
+
|
125 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
126 |
+
|
127 |
+
</details>
|
128 |
+
-->
|
129 |
+
|
130 |
+
<!--
|
131 |
+
### Downstream Usage (Sentence Transformers)
|
132 |
+
|
133 |
+
You can finetune this model on your own dataset.
|
134 |
+
|
135 |
+
<details><summary>Click to expand</summary>
|
136 |
+
|
137 |
+
</details>
|
138 |
+
-->
|
139 |
+
|
140 |
+
<!--
|
141 |
+
### Out-of-Scope Use
|
142 |
+
|
143 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
144 |
+
-->
|
145 |
+
|
146 |
+
## Evaluation
|
147 |
+
|
148 |
+
### Metrics
|
149 |
+
|
150 |
+
#### Semantic Similarity
|
151 |
+
|
152 |
+
* Dataset: `eval-similarity`
|
153 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
154 |
+
|
155 |
+
| Metric | Value |
|
156 |
+
|:--------------------|:-----------|
|
157 |
+
| pearson_cosine | 0.9058 |
|
158 |
+
| **spearman_cosine** | **0.8399** |
|
159 |
+
|
160 |
+
<!--
|
161 |
+
## Bias, Risks and Limitations
|
162 |
+
|
163 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
164 |
+
-->
|
165 |
+
|
166 |
+
<!--
|
167 |
+
### Recommendations
|
168 |
+
|
169 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
170 |
+
-->
|
171 |
+
|
172 |
+
## Training Details
|
173 |
+
|
174 |
+
### Training Dataset
|
175 |
+
|
176 |
+
#### Unnamed Dataset
|
177 |
+
|
178 |
+
|
179 |
+
* Size: 18,623 training samples
|
180 |
+
* Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
|
181 |
+
* Approximate statistics based on the first 1000 samples:
|
182 |
+
| | text1 | text2 | label |
|
183 |
+
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
184 |
+
| type | string | string | float |
|
185 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 7.67 tokens</li><li>max: 17 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 6.58 tokens</li><li>max: 11 tokens</li></ul> | <ul><li>min: 0.1</li><li>mean: 0.54</li><li>max: 1.0</li></ul> |
|
186 |
+
* Samples:
|
187 |
+
| text1 | text2 | label |
|
188 |
+
|:--------------------------------------------|:--------------------------------------|:-----------------|
|
189 |
+
| <code>tabua carne</code> | <code>casa decoracao</code> | <code>1.0</code> |
|
190 |
+
| <code>caminhaor basculante brinquedo</code> | <code>brinquedo jogo educativo</code> | <code>1.0</code> |
|
191 |
+
| <code>buscar mochila escolar crianca</code> | <code>comida rapido fastfood</code> | <code>0.1</code> |
|
192 |
+
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
193 |
+
```json
|
194 |
+
{
|
195 |
+
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
196 |
+
}
|
197 |
+
```
|
198 |
+
|
199 |
+
### Evaluation Dataset
|
200 |
+
|
201 |
+
#### Unnamed Dataset
|
202 |
+
|
203 |
+
|
204 |
+
* Size: 2,070 evaluation samples
|
205 |
+
* Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
|
206 |
+
* Approximate statistics based on the first 1000 samples:
|
207 |
+
| | text1 | text2 | label |
|
208 |
+
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
209 |
+
| type | string | string | float |
|
210 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 7.69 tokens</li><li>max: 17 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 6.54 tokens</li><li>max: 11 tokens</li></ul> | <ul><li>min: 0.1</li><li>mean: 0.59</li><li>max: 1.0</li></ul> |
|
211 |
+
* Samples:
|
212 |
+
| text1 | text2 | label |
|
213 |
+
|:------------------------------------------|:--------------------------------------|:-----------------|
|
214 |
+
| <code>preciso pao frances integral</code> | <code>padaria confeitaria</code> | <code>1.0</code> |
|
215 |
+
| <code>onde poder comprar microfone</code> | <code>joia bijuterio</code> | <code>0.1</code> |
|
216 |
+
| <code>chuveiro eletrico lorenzetti</code> | <code>livro material literario</code> | <code>0.1</code> |
|
217 |
+
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
218 |
+
```json
|
219 |
+
{
|
220 |
+
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
221 |
+
}
|
222 |
+
```
|
223 |
+
|
224 |
+
### Training Hyperparameters
|
225 |
+
#### Non-Default Hyperparameters
|
226 |
+
|
227 |
+
- `eval_strategy`: steps
|
228 |
+
- `per_device_train_batch_size`: 32
|
229 |
+
- `per_device_eval_batch_size`: 32
|
230 |
+
- `learning_rate`: 0.0001
|
231 |
+
- `weight_decay`: 0.1
|
232 |
+
- `warmup_ratio`: 0.1
|
233 |
+
- `warmup_steps`: 232
|
234 |
+
- `fp16`: True
|
235 |
+
- `load_best_model_at_end`: True
|
236 |
+
|
237 |
+
#### All Hyperparameters
|
238 |
+
<details><summary>Click to expand</summary>
|
239 |
+
|
240 |
+
- `overwrite_output_dir`: False
|
241 |
+
- `do_predict`: False
|
242 |
+
- `eval_strategy`: steps
|
243 |
+
- `prediction_loss_only`: True
|
244 |
+
- `per_device_train_batch_size`: 32
|
245 |
+
- `per_device_eval_batch_size`: 32
|
246 |
+
- `per_gpu_train_batch_size`: None
|
247 |
+
- `per_gpu_eval_batch_size`: None
|
248 |
+
- `gradient_accumulation_steps`: 1
|
249 |
+
- `eval_accumulation_steps`: None
|
250 |
+
- `torch_empty_cache_steps`: None
|
251 |
+
- `learning_rate`: 0.0001
|
252 |
+
- `weight_decay`: 0.1
|
253 |
+
- `adam_beta1`: 0.9
|
254 |
+
- `adam_beta2`: 0.999
|
255 |
+
- `adam_epsilon`: 1e-08
|
256 |
+
- `max_grad_norm`: 1.0
|
257 |
+
- `num_train_epochs`: 3
|
258 |
+
- `max_steps`: -1
|
259 |
+
- `lr_scheduler_type`: linear
|
260 |
+
- `lr_scheduler_kwargs`: {}
|
261 |
+
- `warmup_ratio`: 0.1
|
262 |
+
- `warmup_steps`: 232
|
263 |
+
- `log_level`: passive
|
264 |
+
- `log_level_replica`: warning
|
265 |
+
- `log_on_each_node`: True
|
266 |
+
- `logging_nan_inf_filter`: True
|
267 |
+
- `save_safetensors`: True
|
268 |
+
- `save_on_each_node`: False
|
269 |
+
- `save_only_model`: False
|
270 |
+
- `restore_callback_states_from_checkpoint`: False
|
271 |
+
- `no_cuda`: False
|
272 |
+
- `use_cpu`: False
|
273 |
+
- `use_mps_device`: False
|
274 |
+
- `seed`: 42
|
275 |
+
- `data_seed`: None
|
276 |
+
- `jit_mode_eval`: False
|
277 |
+
- `use_ipex`: False
|
278 |
+
- `bf16`: False
|
279 |
+
- `fp16`: True
|
280 |
+
- `fp16_opt_level`: O1
|
281 |
+
- `half_precision_backend`: auto
|
282 |
+
- `bf16_full_eval`: False
|
283 |
+
- `fp16_full_eval`: False
|
284 |
+
- `tf32`: None
|
285 |
+
- `local_rank`: 0
|
286 |
+
- `ddp_backend`: None
|
287 |
+
- `tpu_num_cores`: None
|
288 |
+
- `tpu_metrics_debug`: False
|
289 |
+
- `debug`: []
|
290 |
+
- `dataloader_drop_last`: False
|
291 |
+
- `dataloader_num_workers`: 0
|
292 |
+
- `dataloader_prefetch_factor`: None
|
293 |
+
- `past_index`: -1
|
294 |
+
- `disable_tqdm`: False
|
295 |
+
- `remove_unused_columns`: True
|
296 |
+
- `label_names`: None
|
297 |
+
- `load_best_model_at_end`: True
|
298 |
+
- `ignore_data_skip`: False
|
299 |
+
- `fsdp`: []
|
300 |
+
- `fsdp_min_num_params`: 0
|
301 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
302 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
303 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
304 |
+
- `deepspeed`: None
|
305 |
+
- `label_smoothing_factor`: 0.0
|
306 |
+
- `optim`: adamw_torch
|
307 |
+
- `optim_args`: None
|
308 |
+
- `adafactor`: False
|
309 |
+
- `group_by_length`: False
|
310 |
+
- `length_column_name`: length
|
311 |
+
- `ddp_find_unused_parameters`: None
|
312 |
+
- `ddp_bucket_cap_mb`: None
|
313 |
+
- `ddp_broadcast_buffers`: False
|
314 |
+
- `dataloader_pin_memory`: True
|
315 |
+
- `dataloader_persistent_workers`: False
|
316 |
+
- `skip_memory_metrics`: True
|
317 |
+
- `use_legacy_prediction_loop`: False
|
318 |
+
- `push_to_hub`: False
|
319 |
+
- `resume_from_checkpoint`: None
|
320 |
+
- `hub_model_id`: None
|
321 |
+
- `hub_strategy`: every_save
|
322 |
+
- `hub_private_repo`: None
|
323 |
+
- `hub_always_push`: False
|
324 |
+
- `gradient_checkpointing`: False
|
325 |
+
- `gradient_checkpointing_kwargs`: None
|
326 |
+
- `include_inputs_for_metrics`: False
|
327 |
+
- `include_for_metrics`: []
|
328 |
+
- `eval_do_concat_batches`: True
|
329 |
+
- `fp16_backend`: auto
|
330 |
+
- `push_to_hub_model_id`: None
|
331 |
+
- `push_to_hub_organization`: None
|
332 |
+
- `mp_parameters`:
|
333 |
+
- `auto_find_batch_size`: False
|
334 |
+
- `full_determinism`: False
|
335 |
+
- `torchdynamo`: None
|
336 |
+
- `ray_scope`: last
|
337 |
+
- `ddp_timeout`: 1800
|
338 |
+
- `torch_compile`: False
|
339 |
+
- `torch_compile_backend`: None
|
340 |
+
- `torch_compile_mode`: None
|
341 |
+
- `dispatch_batches`: None
|
342 |
+
- `split_batches`: None
|
343 |
+
- `include_tokens_per_second`: False
|
344 |
+
- `include_num_input_tokens_seen`: False
|
345 |
+
- `neftune_noise_alpha`: None
|
346 |
+
- `optim_target_modules`: None
|
347 |
+
- `batch_eval_metrics`: False
|
348 |
+
- `eval_on_start`: False
|
349 |
+
- `use_liger_kernel`: False
|
350 |
+
- `eval_use_gather_object`: False
|
351 |
+
- `average_tokens_across_devices`: False
|
352 |
+
- `prompts`: None
|
353 |
+
- `batch_sampler`: batch_sampler
|
354 |
+
- `multi_dataset_batch_sampler`: proportional
|
355 |
+
|
356 |
+
</details>
|
357 |
+
|
358 |
+
### Training Logs
|
359 |
+
<details><summary>Click to expand</summary>
|
360 |
+
|
361 |
+
| Epoch | Step | Training Loss | Validation Loss | eval-similarity_spearman_cosine |
|
362 |
+
|:----------:|:--------:|:-------------:|:---------------:|:-------------------------------:|
|
363 |
+
| 0.0086 | 5 | 0.2031 | - | - |
|
364 |
+
| 0.0172 | 10 | 0.2078 | - | - |
|
365 |
+
| 0.0258 | 15 | 0.2062 | - | - |
|
366 |
+
| 0.0344 | 20 | 0.1693 | - | - |
|
367 |
+
| 0.0430 | 25 | 0.1681 | - | - |
|
368 |
+
| 0.0515 | 30 | 0.1639 | - | - |
|
369 |
+
| 0.0601 | 35 | 0.1393 | - | - |
|
370 |
+
| 0.0687 | 40 | 0.1675 | - | - |
|
371 |
+
| 0.0773 | 45 | 0.1297 | - | - |
|
372 |
+
| 0.0859 | 50 | 0.1223 | - | - |
|
373 |
+
| 0.0945 | 55 | 0.1203 | - | - |
|
374 |
+
| 0.1031 | 60 | 0.0942 | - | - |
|
375 |
+
| 0.1117 | 65 | 0.0922 | - | - |
|
376 |
+
| 0.1203 | 70 | 0.097 | - | - |
|
377 |
+
| 0.1289 | 75 | 0.0927 | - | - |
|
378 |
+
| 0.1375 | 80 | 0.0961 | - | - |
|
379 |
+
| 0.1460 | 85 | 0.0821 | - | - |
|
380 |
+
| 0.1546 | 90 | 0.0621 | - | - |
|
381 |
+
| 0.1632 | 95 | 0.084 | - | - |
|
382 |
+
| 0.1718 | 100 | 0.0706 | - | - |
|
383 |
+
| 0.1804 | 105 | 0.0701 | - | - |
|
384 |
+
| 0.1890 | 110 | 0.0828 | - | - |
|
385 |
+
| 0.1976 | 115 | 0.078 | - | - |
|
386 |
+
| 0.2062 | 120 | 0.0745 | - | - |
|
387 |
+
| 0.2148 | 125 | 0.0744 | - | - |
|
388 |
+
| 0.2234 | 130 | 0.0785 | - | - |
|
389 |
+
| 0.2320 | 135 | 0.0745 | - | - |
|
390 |
+
| 0.2405 | 140 | 0.0615 | - | - |
|
391 |
+
| 0.2491 | 145 | 0.0665 | - | - |
|
392 |
+
| 0.2577 | 150 | 0.0873 | - | - |
|
393 |
+
| 0.2663 | 155 | 0.0916 | - | - |
|
394 |
+
| 0.2749 | 160 | 0.0659 | - | - |
|
395 |
+
| 0.2835 | 165 | 0.0896 | - | - |
|
396 |
+
| 0.2921 | 170 | 0.0807 | - | - |
|
397 |
+
| 0.3007 | 175 | 0.0745 | - | - |
|
398 |
+
| 0.3093 | 180 | 0.0794 | - | - |
|
399 |
+
| 0.3179 | 185 | 0.0703 | - | - |
|
400 |
+
| 0.3265 | 190 | 0.0705 | - | - |
|
401 |
+
| 0.3351 | 195 | 0.084 | - | - |
|
402 |
+
| 0.3436 | 200 | 0.0671 | - | - |
|
403 |
+
| 0.3522 | 205 | 0.076 | - | - |
|
404 |
+
| 0.3608 | 210 | 0.0821 | - | - |
|
405 |
+
| 0.3694 | 215 | 0.0499 | - | - |
|
406 |
+
| 0.3780 | 220 | 0.0729 | - | - |
|
407 |
+
| 0.3866 | 225 | 0.0697 | - | - |
|
408 |
+
| 0.3952 | 230 | 0.085 | - | - |
|
409 |
+
| 0.4038 | 235 | 0.0835 | - | - |
|
410 |
+
| 0.4124 | 240 | 0.0743 | - | - |
|
411 |
+
| 0.4210 | 245 | 0.0714 | - | - |
|
412 |
+
| 0.4296 | 250 | 0.0597 | - | - |
|
413 |
+
| 0.4381 | 255 | 0.0626 | - | - |
|
414 |
+
| 0.4467 | 260 | 0.0522 | - | - |
|
415 |
+
| 0.4553 | 265 | 0.0734 | - | - |
|
416 |
+
| 0.4639 | 270 | 0.0616 | - | - |
|
417 |
+
| 0.4725 | 275 | 0.0463 | - | - |
|
418 |
+
| 0.4811 | 280 | 0.0631 | - | - |
|
419 |
+
| 0.4897 | 285 | 0.0672 | - | - |
|
420 |
+
| 0.4983 | 290 | 0.0725 | - | - |
|
421 |
+
| 0.5069 | 295 | 0.043 | - | - |
|
422 |
+
| 0.5155 | 300 | 0.0675 | 0.0698 | 0.7861 |
|
423 |
+
| 0.5241 | 305 | 0.0837 | - | - |
|
424 |
+
| 0.5326 | 310 | 0.0785 | - | - |
|
425 |
+
| 0.5412 | 315 | 0.0761 | - | - |
|
426 |
+
| 0.5498 | 320 | 0.0523 | - | - |
|
427 |
+
| 0.5584 | 325 | 0.0514 | - | - |
|
428 |
+
| 0.5670 | 330 | 0.0726 | - | - |
|
429 |
+
| 0.5756 | 335 | 0.0584 | - | - |
|
430 |
+
| 0.5842 | 340 | 0.0736 | - | - |
|
431 |
+
| 0.5928 | 345 | 0.0705 | - | - |
|
432 |
+
| 0.6014 | 350 | 0.0682 | - | - |
|
433 |
+
| 0.6100 | 355 | 0.0636 | - | - |
|
434 |
+
| 0.6186 | 360 | 0.0484 | - | - |
|
435 |
+
| 0.6271 | 365 | 0.0524 | - | - |
|
436 |
+
| 0.6357 | 370 | 0.0657 | - | - |
|
437 |
+
| 0.6443 | 375 | 0.0766 | - | - |
|
438 |
+
| 0.6529 | 380 | 0.0759 | - | - |
|
439 |
+
| 0.6615 | 385 | 0.071 | - | - |
|
440 |
+
| 0.6701 | 390 | 0.055 | - | - |
|
441 |
+
| 0.6787 | 395 | 0.0466 | - | - |
|
442 |
+
| 0.6873 | 400 | 0.0697 | - | - |
|
443 |
+
| 0.6959 | 405 | 0.0546 | - | - |
|
444 |
+
| 0.7045 | 410 | 0.0692 | - | - |
|
445 |
+
| 0.7131 | 415 | 0.0519 | - | - |
|
446 |
+
| 0.7216 | 420 | 0.0521 | - | - |
|
447 |
+
| 0.7302 | 425 | 0.0449 | - | - |
|
448 |
+
| 0.7388 | 430 | 0.0646 | - | - |
|
449 |
+
| 0.7474 | 435 | 0.0585 | - | - |
|
450 |
+
| 0.7560 | 440 | 0.0536 | - | - |
|
451 |
+
| 0.7646 | 445 | 0.0592 | - | - |
|
452 |
+
| 0.7732 | 450 | 0.0515 | - | - |
|
453 |
+
| 0.7818 | 455 | 0.0676 | - | - |
|
454 |
+
| 0.7904 | 460 | 0.0732 | - | - |
|
455 |
+
| 0.7990 | 465 | 0.0618 | - | - |
|
456 |
+
| 0.8076 | 470 | 0.0579 | - | - |
|
457 |
+
| 0.8162 | 475 | 0.0516 | - | - |
|
458 |
+
| 0.8247 | 480 | 0.0659 | - | - |
|
459 |
+
| 0.8333 | 485 | 0.0583 | - | - |
|
460 |
+
| 0.8419 | 490 | 0.0624 | - | - |
|
461 |
+
| 0.8505 | 495 | 0.0667 | - | - |
|
462 |
+
| 0.8591 | 500 | 0.052 | - | - |
|
463 |
+
| 0.8677 | 505 | 0.0858 | - | - |
|
464 |
+
| 0.8763 | 510 | 0.0441 | - | - |
|
465 |
+
| 0.8849 | 515 | 0.0592 | - | - |
|
466 |
+
| 0.8935 | 520 | 0.0532 | - | - |
|
467 |
+
| 0.9021 | 525 | 0.0478 | - | - |
|
468 |
+
| 0.9107 | 530 | 0.062 | - | - |
|
469 |
+
| 0.9192 | 535 | 0.0487 | - | - |
|
470 |
+
| 0.9278 | 540 | 0.0704 | - | - |
|
471 |
+
| 0.9364 | 545 | 0.0467 | - | - |
|
472 |
+
| 0.9450 | 550 | 0.0482 | - | - |
|
473 |
+
| 0.9536 | 555 | 0.0796 | - | - |
|
474 |
+
| 0.9622 | 560 | 0.0568 | - | - |
|
475 |
+
| 0.9708 | 565 | 0.0588 | - | - |
|
476 |
+
| 0.9794 | 570 | 0.0514 | - | - |
|
477 |
+
| 0.9880 | 575 | 0.0543 | - | - |
|
478 |
+
| 0.9966 | 580 | 0.0568 | - | - |
|
479 |
+
| 1.0052 | 585 | 0.0513 | - | - |
|
480 |
+
| 1.0137 | 590 | 0.0361 | - | - |
|
481 |
+
| 1.0223 | 595 | 0.0405 | - | - |
|
482 |
+
| 1.0309 | 600 | 0.0347 | 0.0491 | 0.8180 |
|
483 |
+
| 1.0395 | 605 | 0.0459 | - | - |
|
484 |
+
| 1.0481 | 610 | 0.0557 | - | - |
|
485 |
+
| 1.0567 | 615 | 0.0447 | - | - |
|
486 |
+
| 1.0653 | 620 | 0.0279 | - | - |
|
487 |
+
| 1.0739 | 625 | 0.0417 | - | - |
|
488 |
+
| 1.0825 | 630 | 0.025 | - | - |
|
489 |
+
| 1.0911 | 635 | 0.0399 | - | - |
|
490 |
+
| 1.0997 | 640 | 0.0466 | - | - |
|
491 |
+
| 1.1082 | 645 | 0.0294 | - | - |
|
492 |
+
| 1.1168 | 650 | 0.035 | - | - |
|
493 |
+
| 1.1254 | 655 | 0.0376 | - | - |
|
494 |
+
| 1.1340 | 660 | 0.0414 | - | - |
|
495 |
+
| 1.1426 | 665 | 0.0502 | - | - |
|
496 |
+
| 1.1512 | 670 | 0.04 | - | - |
|
497 |
+
| 1.1598 | 675 | 0.0385 | - | - |
|
498 |
+
| 1.1684 | 680 | 0.0286 | - | - |
|
499 |
+
| 1.1770 | 685 | 0.0361 | - | - |
|
500 |
+
| 1.1856 | 690 | 0.0282 | - | - |
|
501 |
+
| 1.1942 | 695 | 0.0473 | - | - |
|
502 |
+
| 1.2027 | 700 | 0.0346 | - | - |
|
503 |
+
| 1.2113 | 705 | 0.0295 | - | - |
|
504 |
+
| 1.2199 | 710 | 0.0283 | - | - |
|
505 |
+
| 1.2285 | 715 | 0.0301 | - | - |
|
506 |
+
| 1.2371 | 720 | 0.0565 | - | - |
|
507 |
+
| 1.2457 | 725 | 0.0325 | - | - |
|
508 |
+
| 1.2543 | 730 | 0.0299 | - | - |
|
509 |
+
| 1.2629 | 735 | 0.0417 | - | - |
|
510 |
+
| 1.2715 | 740 | 0.0398 | - | - |
|
511 |
+
| 1.2801 | 745 | 0.0477 | - | - |
|
512 |
+
| 1.2887 | 750 | 0.0418 | - | - |
|
513 |
+
| 1.2973 | 755 | 0.034 | - | - |
|
514 |
+
| 1.3058 | 760 | 0.0397 | - | - |
|
515 |
+
| 1.3144 | 765 | 0.0308 | - | - |
|
516 |
+
| 1.3230 | 770 | 0.0457 | - | - |
|
517 |
+
| 1.3316 | 775 | 0.0328 | - | - |
|
518 |
+
| 1.3402 | 780 | 0.0222 | - | - |
|
519 |
+
| 1.3488 | 785 | 0.0246 | - | - |
|
520 |
+
| 1.3574 | 790 | 0.0229 | - | - |
|
521 |
+
| 1.3660 | 795 | 0.0351 | - | - |
|
522 |
+
| 1.3746 | 800 | 0.0415 | - | - |
|
523 |
+
| 1.3832 | 805 | 0.0351 | - | - |
|
524 |
+
| 1.3918 | 810 | 0.0269 | - | - |
|
525 |
+
| 1.4003 | 815 | 0.0307 | - | - |
|
526 |
+
| 1.4089 | 820 | 0.0381 | - | - |
|
527 |
+
| 1.4175 | 825 | 0.0425 | - | - |
|
528 |
+
| 1.4261 | 830 | 0.0557 | - | - |
|
529 |
+
| 1.4347 | 835 | 0.0523 | - | - |
|
530 |
+
| 1.4433 | 840 | 0.0488 | - | - |
|
531 |
+
| 1.4519 | 845 | 0.0355 | - | - |
|
532 |
+
| 1.4605 | 850 | 0.0403 | - | - |
|
533 |
+
| 1.4691 | 855 | 0.0332 | - | - |
|
534 |
+
| 1.4777 | 860 | 0.0427 | - | - |
|
535 |
+
| 1.4863 | 865 | 0.0348 | - | - |
|
536 |
+
| 1.4948 | 870 | 0.0375 | - | - |
|
537 |
+
| 1.5034 | 875 | 0.0271 | - | - |
|
538 |
+
| 1.5120 | 880 | 0.0428 | - | - |
|
539 |
+
| 1.5206 | 885 | 0.0666 | - | - |
|
540 |
+
| 1.5292 | 890 | 0.0491 | - | - |
|
541 |
+
| 1.5378 | 895 | 0.0424 | - | - |
|
542 |
+
| 1.5464 | 900 | 0.0413 | 0.0418 | 0.8326 |
|
543 |
+
| 1.5550 | 905 | 0.0469 | - | - |
|
544 |
+
| 1.5636 | 910 | 0.0288 | - | - |
|
545 |
+
| 1.5722 | 915 | 0.0541 | - | - |
|
546 |
+
| 1.5808 | 920 | 0.017 | - | - |
|
547 |
+
| 1.5893 | 925 | 0.0505 | - | - |
|
548 |
+
| 1.5979 | 930 | 0.0341 | - | - |
|
549 |
+
| 1.6065 | 935 | 0.0223 | - | - |
|
550 |
+
| 1.6151 | 940 | 0.0469 | - | - |
|
551 |
+
| 1.6237 | 945 | 0.0386 | - | - |
|
552 |
+
| 1.6323 | 950 | 0.0214 | - | - |
|
553 |
+
| 1.6409 | 955 | 0.0329 | - | - |
|
554 |
+
| 1.6495 | 960 | 0.0398 | - | - |
|
555 |
+
| 1.6581 | 965 | 0.0355 | - | - |
|
556 |
+
| 1.6667 | 970 | 0.0373 | - | - |
|
557 |
+
| 1.6753 | 975 | 0.0339 | - | - |
|
558 |
+
| 1.6838 | 980 | 0.0349 | - | - |
|
559 |
+
| 1.6924 | 985 | 0.0439 | - | - |
|
560 |
+
| 1.7010 | 990 | 0.0425 | - | - |
|
561 |
+
| 1.7096 | 995 | 0.0318 | - | - |
|
562 |
+
| 1.7182 | 1000 | 0.025 | - | - |
|
563 |
+
| 1.7268 | 1005 | 0.0334 | - | - |
|
564 |
+
| 1.7354 | 1010 | 0.0327 | - | - |
|
565 |
+
| 1.7440 | 1015 | 0.0356 | - | - |
|
566 |
+
| 1.7526 | 1020 | 0.0428 | - | - |
|
567 |
+
| 1.7612 | 1025 | 0.0432 | - | - |
|
568 |
+
| 1.7698 | 1030 | 0.0334 | - | - |
|
569 |
+
| 1.7784 | 1035 | 0.032 | - | - |
|
570 |
+
| 1.7869 | 1040 | 0.0318 | - | - |
|
571 |
+
| 1.7955 | 1045 | 0.0281 | - | - |
|
572 |
+
| 1.8041 | 1050 | 0.0231 | - | - |
|
573 |
+
| 1.8127 | 1055 | 0.0436 | - | - |
|
574 |
+
| 1.8213 | 1060 | 0.0303 | - | - |
|
575 |
+
| 1.8299 | 1065 | 0.0489 | - | - |
|
576 |
+
| 1.8385 | 1070 | 0.0292 | - | - |
|
577 |
+
| 1.8471 | 1075 | 0.06 | - | - |
|
578 |
+
| 1.8557 | 1080 | 0.0329 | - | - |
|
579 |
+
| 1.8643 | 1085 | 0.0322 | - | - |
|
580 |
+
| 1.8729 | 1090 | 0.0426 | - | - |
|
581 |
+
| 1.8814 | 1095 | 0.0263 | - | - |
|
582 |
+
| 1.8900 | 1100 | 0.024 | - | - |
|
583 |
+
| 1.8986 | 1105 | 0.0228 | - | - |
|
584 |
+
| 1.9072 | 1110 | 0.0313 | - | - |
|
585 |
+
| 1.9158 | 1115 | 0.044 | - | - |
|
586 |
+
| 1.9244 | 1120 | 0.036 | - | - |
|
587 |
+
| 1.9330 | 1125 | 0.0252 | - | - |
|
588 |
+
| 1.9416 | 1130 | 0.0311 | - | - |
|
589 |
+
| 1.9502 | 1135 | 0.0452 | - | - |
|
590 |
+
| 1.9588 | 1140 | 0.0338 | - | - |
|
591 |
+
| 1.9674 | 1145 | 0.0447 | - | - |
|
592 |
+
| 1.9759 | 1150 | 0.0318 | - | - |
|
593 |
+
| 1.9845 | 1155 | 0.0428 | - | - |
|
594 |
+
| 1.9931 | 1160 | 0.03 | - | - |
|
595 |
+
| 2.0017 | 1165 | 0.0314 | - | - |
|
596 |
+
| 2.0103 | 1170 | 0.0181 | - | - |
|
597 |
+
| 2.0189 | 1175 | 0.0137 | - | - |
|
598 |
+
| 2.0275 | 1180 | 0.0242 | - | - |
|
599 |
+
| 2.0361 | 1185 | 0.03 | - | - |
|
600 |
+
| 2.0447 | 1190 | 0.0267 | - | - |
|
601 |
+
| 2.0533 | 1195 | 0.0263 | - | - |
|
602 |
+
| 2.0619 | 1200 | 0.0219 | 0.0392 | 0.8360 |
|
603 |
+
| 2.0704 | 1205 | 0.0189 | - | - |
|
604 |
+
| 2.0790 | 1210 | 0.0193 | - | - |
|
605 |
+
| 2.0876 | 1215 | 0.0345 | - | - |
|
606 |
+
| 2.0962 | 1220 | 0.0136 | - | - |
|
607 |
+
| 2.1048 | 1225 | 0.0346 | - | - |
|
608 |
+
| 2.1134 | 1230 | 0.0163 | - | - |
|
609 |
+
| 2.1220 | 1235 | 0.0264 | - | - |
|
610 |
+
| 2.1306 | 1240 | 0.0172 | - | - |
|
611 |
+
| 2.1392 | 1245 | 0.0163 | - | - |
|
612 |
+
| 2.1478 | 1250 | 0.0226 | - | - |
|
613 |
+
| 2.1564 | 1255 | 0.0229 | - | - |
|
614 |
+
| 2.1649 | 1260 | 0.0185 | - | - |
|
615 |
+
| 2.1735 | 1265 | 0.0134 | - | - |
|
616 |
+
| 2.1821 | 1270 | 0.0144 | - | - |
|
617 |
+
| 2.1907 | 1275 | 0.0215 | - | - |
|
618 |
+
| 2.1993 | 1280 | 0.0291 | - | - |
|
619 |
+
| 2.2079 | 1285 | 0.0305 | - | - |
|
620 |
+
| 2.2165 | 1290 | 0.0192 | - | - |
|
621 |
+
| 2.2251 | 1295 | 0.0272 | - | - |
|
622 |
+
| 2.2337 | 1300 | 0.0267 | - | - |
|
623 |
+
| 2.2423 | 1305 | 0.0265 | - | - |
|
624 |
+
| 2.2509 | 1310 | 0.0207 | - | - |
|
625 |
+
| 2.2595 | 1315 | 0.0305 | - | - |
|
626 |
+
| 2.2680 | 1320 | 0.0292 | - | - |
|
627 |
+
| 2.2766 | 1325 | 0.017 | - | - |
|
628 |
+
| 2.2852 | 1330 | 0.0242 | - | - |
|
629 |
+
| 2.2938 | 1335 | 0.016 | - | - |
|
630 |
+
| 2.3024 | 1340 | 0.0241 | - | - |
|
631 |
+
| 2.3110 | 1345 | 0.0193 | - | - |
|
632 |
+
| 2.3196 | 1350 | 0.0134 | - | - |
|
633 |
+
| 2.3282 | 1355 | 0.0206 | - | - |
|
634 |
+
| 2.3368 | 1360 | 0.0218 | - | - |
|
635 |
+
| 2.3454 | 1365 | 0.0239 | - | - |
|
636 |
+
| 2.3540 | 1370 | 0.0314 | - | - |
|
637 |
+
| 2.3625 | 1375 | 0.028 | - | - |
|
638 |
+
| 2.3711 | 1380 | 0.021 | - | - |
|
639 |
+
| 2.3797 | 1385 | 0.0179 | - | - |
|
640 |
+
| 2.3883 | 1390 | 0.0173 | - | - |
|
641 |
+
| 2.3969 | 1395 | 0.0228 | - | - |
|
642 |
+
| 2.4055 | 1400 | 0.0217 | - | - |
|
643 |
+
| 2.4141 | 1405 | 0.0243 | - | - |
|
644 |
+
| 2.4227 | 1410 | 0.018 | - | - |
|
645 |
+
| 2.4313 | 1415 | 0.0233 | - | - |
|
646 |
+
| 2.4399 | 1420 | 0.016 | - | - |
|
647 |
+
| 2.4485 | 1425 | 0.0308 | - | - |
|
648 |
+
| 2.4570 | 1430 | 0.0239 | - | - |
|
649 |
+
| 2.4656 | 1435 | 0.018 | - | - |
|
650 |
+
| 2.4742 | 1440 | 0.016 | - | - |
|
651 |
+
| 2.4828 | 1445 | 0.0189 | - | - |
|
652 |
+
| 2.4914 | 1450 | 0.0215 | - | - |
|
653 |
+
| 2.5 | 1455 | 0.027 | - | - |
|
654 |
+
| 2.5086 | 1460 | 0.0177 | - | - |
|
655 |
+
| 2.5172 | 1465 | 0.0325 | - | - |
|
656 |
+
| 2.5258 | 1470 | 0.0136 | - | - |
|
657 |
+
| 2.5344 | 1475 | 0.0235 | - | - |
|
658 |
+
| 2.5430 | 1480 | 0.0362 | - | - |
|
659 |
+
| 2.5515 | 1485 | 0.0302 | - | - |
|
660 |
+
| 2.5601 | 1490 | 0.0137 | - | - |
|
661 |
+
| 2.5687 | 1495 | 0.0162 | - | - |
|
662 |
+
| **2.5773** | **1500** | **0.0174** | **0.0376** | **0.8399** |
|
663 |
+
| 2.5859 | 1505 | 0.0248 | - | - |
|
664 |
+
| 2.5945 | 1510 | 0.0131 | - | - |
|
665 |
+
| 2.6031 | 1515 | 0.0188 | - | - |
|
666 |
+
| 2.6117 | 1520 | 0.011 | - | - |
|
667 |
+
| 2.6203 | 1525 | 0.0174 | - | - |
|
668 |
+
| 2.6289 | 1530 | 0.0192 | - | - |
|
669 |
+
| 2.6375 | 1535 | 0.0113 | - | - |
|
670 |
+
| 2.6460 | 1540 | 0.0304 | - | - |
|
671 |
+
| 2.6546 | 1545 | 0.0217 | - | - |
|
672 |
+
| 2.6632 | 1550 | 0.0102 | - | - |
|
673 |
+
| 2.6718 | 1555 | 0.0164 | - | - |
|
674 |
+
| 2.6804 | 1560 | 0.017 | - | - |
|
675 |
+
| 2.6890 | 1565 | 0.0146 | - | - |
|
676 |
+
| 2.6976 | 1570 | 0.0139 | - | - |
|
677 |
+
| 2.7062 | 1575 | 0.0171 | - | - |
|
678 |
+
| 2.7148 | 1580 | 0.0137 | - | - |
|
679 |
+
| 2.7234 | 1585 | 0.008 | - | - |
|
680 |
+
| 2.7320 | 1590 | 0.0222 | - | - |
|
681 |
+
| 2.7405 | 1595 | 0.0295 | - | - |
|
682 |
+
| 2.7491 | 1600 | 0.0178 | - | - |
|
683 |
+
| 2.7577 | 1605 | 0.0144 | - | - |
|
684 |
+
| 2.7663 | 1610 | 0.023 | - | - |
|
685 |
+
| 2.7749 | 1615 | 0.0135 | - | - |
|
686 |
+
| 2.7835 | 1620 | 0.0213 | - | - |
|
687 |
+
| 2.7921 | 1625 | 0.0213 | - | - |
|
688 |
+
| 2.8007 | 1630 | 0.0212 | - | - |
|
689 |
+
| 2.8093 | 1635 | 0.0164 | - | - |
|
690 |
+
| 2.8179 | 1640 | 0.0212 | - | - |
|
691 |
+
| 2.8265 | 1645 | 0.0157 | - | - |
|
692 |
+
| 2.8351 | 1650 | 0.0251 | - | - |
|
693 |
+
| 2.8436 | 1655 | 0.0276 | - | - |
|
694 |
+
| 2.8522 | 1660 | 0.0104 | - | - |
|
695 |
+
| 2.8608 | 1665 | 0.0123 | - | - |
|
696 |
+
| 2.8694 | 1670 | 0.0339 | - | - |
|
697 |
+
| 2.8780 | 1675 | 0.0203 | - | - |
|
698 |
+
| 2.8866 | 1680 | 0.0171 | - | - |
|
699 |
+
| 2.8952 | 1685 | 0.0304 | - | - |
|
700 |
+
| 2.9038 | 1690 | 0.015 | - | - |
|
701 |
+
| 2.9124 | 1695 | 0.0177 | - | - |
|
702 |
+
| 2.9210 | 1700 | 0.0176 | - | - |
|
703 |
+
| 2.9296 | 1705 | 0.0229 | - | - |
|
704 |
+
| 2.9381 | 1710 | 0.0166 | - | - |
|
705 |
+
| 2.9467 | 1715 | 0.0185 | - | - |
|
706 |
+
| 2.9553 | 1720 | 0.017 | - | - |
|
707 |
+
| 2.9639 | 1725 | 0.0109 | - | - |
|
708 |
+
| 2.9725 | 1730 | 0.0154 | - | - |
|
709 |
+
| 2.9811 | 1735 | 0.0226 | - | - |
|
710 |
+
| 2.9897 | 1740 | 0.0142 | - | - |
|
711 |
+
| 2.9983 | 1745 | 0.0257 | - | - |
|
712 |
+
|
713 |
+
* The bold row denotes the saved checkpoint.
|
714 |
+
</details>
|
715 |
+
|
716 |
+
### Framework Versions
|
717 |
+
- Python: 3.10.12
|
718 |
+
- Sentence Transformers: 3.3.1
|
719 |
+
- Transformers: 4.47.1
|
720 |
+
- PyTorch: 2.5.1+cu121
|
721 |
+
- Accelerate: 1.2.1
|
722 |
+
- Datasets: 2.14.4
|
723 |
+
- Tokenizers: 0.21.0
|
724 |
+
|
725 |
+
## Citation
|
726 |
+
|
727 |
+
### BibTeX
|
728 |
+
|
729 |
+
#### Sentence Transformers
|
730 |
+
```bibtex
|
731 |
+
@inproceedings{reimers-2019-sentence-bert,
|
732 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
733 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
734 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
735 |
+
month = "11",
|
736 |
+
year = "2019",
|
737 |
+
publisher = "Association for Computational Linguistics",
|
738 |
+
url = "https://arxiv.org/abs/1908.10084",
|
739 |
+
}
|
740 |
+
```
|
741 |
+
|
742 |
+
<!--
|
743 |
+
## Glossary
|
744 |
+
|
745 |
+
*Clearly define terms in order to be accessible across audiences.*
|
746 |
+
-->
|
747 |
+
|
748 |
+
<!--
|
749 |
+
## Model Card Authors
|
750 |
+
|
751 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
752 |
+
-->
|
753 |
+
|
754 |
+
<!--
|
755 |
+
## Model Card Contact
|
756 |
+
|
757 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
758 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/content/models/bert-ptbr-e3-lr0.0001",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"directionality": "bidi",
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 1024,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 4096,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 16,
|
18 |
+
"num_hidden_layers": 24,
|
19 |
+
"output_past": true,
|
20 |
+
"pad_token_id": 0,
|
21 |
+
"pooler_fc_size": 768,
|
22 |
+
"pooler_num_attention_heads": 12,
|
23 |
+
"pooler_num_fc_layers": 3,
|
24 |
+
"pooler_size_per_head": 128,
|
25 |
+
"pooler_type": "first_token_transform",
|
26 |
+
"position_embedding_type": "absolute",
|
27 |
+
"torch_dtype": "float32",
|
28 |
+
"transformers_version": "4.47.1",
|
29 |
+
"type_vocab_size": 2,
|
30 |
+
"use_cache": true,
|
31 |
+
"vocab_size": 29794
|
32 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.1",
|
4 |
+
"transformers": "4.47.1",
|
5 |
+
"pytorch": "2.5.1+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c3b52a6785889ab2971d28c62dc54826741c15957a2c48d40d29f19047847e87
|
3 |
+
size 1337630536
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": false,
|
48 |
+
"extra_special_tokens": {},
|
49 |
+
"mask_token": "[MASK]",
|
50 |
+
"max_length": 512,
|
51 |
+
"model_max_length": 512,
|
52 |
+
"never_split": null,
|
53 |
+
"pad_to_multiple_of": null,
|
54 |
+
"pad_token": "[PAD]",
|
55 |
+
"pad_token_type_id": 0,
|
56 |
+
"padding_side": "right",
|
57 |
+
"sep_token": "[SEP]",
|
58 |
+
"stride": 0,
|
59 |
+
"strip_accents": null,
|
60 |
+
"tokenize_chinese_chars": true,
|
61 |
+
"tokenizer_class": "BertTokenizer",
|
62 |
+
"truncation_side": "right",
|
63 |
+
"truncation_strategy": "longest_first",
|
64 |
+
"unk_token": "[UNK]"
|
65 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|