File size: 1,747 Bytes
354a314
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
license: mit
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
model-index:
- name: multilingual-xlm-roberta-for-ner-panx
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: xtreme
      type: xtreme
      config: PAN-X.de
      split: validation
      args: PAN-X.de
    metrics:
    - name: F1
      type: f1
      value: 0.8610589774213728
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# multilingual-xlm-roberta-for-ner-panx

This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1355
- F1: 0.8611

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2638        | 1.0   | 525  | 0.1569          | 0.8279 |
| 0.1272        | 2.0   | 1050 | 0.1370          | 0.8490 |
| 0.08          | 3.0   | 1575 | 0.1355          | 0.8611 |


### Framework versions

- Transformers 4.28.0
- Pytorch 2.1.1+cu121
- Datasets 2.16.1
- Tokenizers 0.13.3