--- language: - vi license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Medium VI - CV - Augmented results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: vi split: test args: vi metrics: - type: wer value: 18.030269796007897 name: Wer - type: wer value: 17.98 name: WER - type: cer value: 8.31 name: CER --- # Whisper Medium VI - CV - Augmented This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.6613 - Wer: 18.0303 - Cer: 8.3095 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:| | 0.0053 | 11.49 | 1000 | 0.5429 | 18.1290 | 8.4643 | | 0.0021 | 22.99 | 2000 | 0.5916 | 18.8857 | 8.6538 | | 0.0001 | 34.48 | 3000 | 0.6348 | 18.3374 | 8.4296 | | 0.0001 | 45.98 | 4000 | 0.6508 | 17.9754 | 8.3149 | | 0.0001 | 57.47 | 5000 | 0.6613 | 18.0303 | 8.3095 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2