--- license: apache-2.0 datasets: - Open-Orca/SlimOrca --- # Instruction-Tuned Mamba 2.8B on SlimOrca Dataset ## Overview This repository features the [2.8 billion parameter Mamba model](https://huggingface.co/state-spaces/mamba-2.8b), fine-tuned on a subset (20k) of the [SlimOrca dataset](https://huggingface.co/datasets/Open-Orca/SlimOrca). Big thanks to Justin Mattern from Haven for contributing essential code in the [mamba-chat repository](https://github.com/havenhq/mamba-chat) ## Usage Instructions To utilize the fine-tuned model, follow the Python code snippet below: ```python import torch from transformers import AutoTokenizer from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel device = "cuda" tokenizer = AutoTokenizer.from_pretrained("Schmadge/mamba-slim-orca") tokenizer.eos_token = tokenizer.pad_token = "<|endoftext|>" tokenizer.chat_template = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta").chat_template model = MambaLMHeadModel.from_pretrained("Schmadge/mamba-slim-orca", device=device, dtype=torch.float16) def generate_response(system_prompt, user_prompt): # Preparing the prompt prompt = [ {"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt} ] input_ids = tokenizer.apply_chat_template(prompt, return_tensors="pt", add_generation_prompt=True).to(device) # Generating the response out = model.generate(input_ids=input_ids, max_length=2000, temperature=0.3, top_p=0.7, eos_token_id=tokenizer.eos_token_id) decoded = tokenizer.batch_decode(out) return decoded[0].split("<|assistant|>\n")[-1].replace('<|endoftext|>','') system_prompt = "You are an AI assistant. Provide a detailed answer so user don't need to search outside to understand the answer." user_prompt = "In a room I have only 3 sisters. Anna is reading a book. Alice is playing a match of chess.What the third sister, Amanda is doing ?" response = generate_response(system_prompt, user_prompt) print(response) #Based on the information provided, we can infer that Amanda is playing a match of chess with Alice. Since Anna is reading a book, it is reasonable to assume that Amanda is playing a game of chess with Alice, as this is a common activity for siblings to engage in together. ``` ## Refrences: Mamba Chat: ```bibtex @misc{haven2023mambachat, title = {Mamba-Chat}, author = {Justus Mattern and Konstantin Hohr}, year = {2023}, howpublished = {GitHub}, url = {https://github.com/havenhq/mamba-chat} } ``` Mamba: ```bibtex @article{mamba, title={Mamba: Linear-Time Sequence Modeling with Selective State Spaces}, author={Gu, Albert and Dao, Tri}, journal={arXiv preprint arXiv:2312.00752}, year={2023} } ``` SlimOrca: ```bibtex @misc{SlimOrca, title = {SlimOrca: An Open Dataset of GPT-4 Augmented FLAN Reasoning Traces, with Verification}, author = {Wing Lian and others}, year = {2023}, publisher = {HuggingFace}, url = {https://huggingface.co/Open-Orca/SlimOrca} } ```