Sami92 commited on
Commit
5b5bb24
·
verified ·
1 Parent(s): acb882c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +27 -124
README.md CHANGED
@@ -12,61 +12,20 @@ tags:
12
  ---
13
  # Model Card for Model ID
14
 
15
- <!-- Provide a quick summary of what the model is/does. -->
16
-
17
- This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
 
 
 
18
 
19
  ## Model Details
 
20
 
21
- ### Model Description
22
-
23
- <!-- Provide a longer summary of what this model is. -->
24
-
25
-
26
-
27
- - **Developed by:** [More Information Needed]
28
- - **Funded by [optional]:** [More Information Needed]
29
- - **Shared by [optional]:** [More Information Needed]
30
- - **Model type:** [More Information Needed]
31
- - **Language(s) (NLP):** [More Information Needed]
32
- - **License:** [More Information Needed]
33
- - **Finetuned from model [optional]:** [More Information Needed]
34
-
35
- ### Model Sources [optional]
36
-
37
- <!-- Provide the basic links for the model. -->
38
-
39
- - **Repository:** [More Information Needed]
40
- - **Paper [optional]:** [More Information Needed]
41
- - **Demo [optional]:** [More Information Needed]
42
-
43
- ## Uses
44
-
45
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
46
-
47
- ### Direct Use
48
-
49
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
50
-
51
- [More Information Needed]
52
-
53
- ### Downstream Use [optional]
54
-
55
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
56
-
57
- [More Information Needed]
58
-
59
- ### Out-of-Scope Use
60
-
61
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
62
-
63
- [More Information Needed]
64
 
65
  ## Bias, Risks, and Limitations
66
 
67
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
68
-
69
- [More Information Needed]
70
 
71
  ### Recommendations
72
 
@@ -80,13 +39,17 @@ Users (both direct and downstream) should be made aware of the risks, biases and
80
  from transformers import AutoTokenizer, AutoModelForTokenClassification
81
  from transformers import pipeline
82
 
83
- model_name = "your-model-name" # Replace with your model name
84
  tokenizer = AutoTokenizer.from_pretrained(model_name)
85
  model = AutoModelForTokenClassification.from_pretrained(model_name)
86
 
87
  ner_pipeline = pipeline("ner", model=model, tokenizer=tokenizer)
88
 
89
- text = "Barack Obama was born on August 4, 1961 in Honolulu, Hawaii."
 
 
 
 
90
 
91
  entities = ner_pipeline(text)
92
 
@@ -115,13 +78,12 @@ for entity in entities:
115
 
116
  #### Training Hyperparameters
117
 
118
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
 
 
 
119
 
120
- #### Speeds, Sizes, Times [optional]
121
 
122
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
123
-
124
- [More Information Needed]
125
 
126
  ## Evaluation
127
 
@@ -135,9 +97,6 @@ for entity in entities:
135
 
136
  [More Information Needed]
137
 
138
- #### Factors
139
-
140
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
141
 
142
  [More Information Needed]
143
 
@@ -151,72 +110,16 @@ for entity in entities:
151
 
152
  [More Information Needed]
153
 
154
- #### Summary
155
-
156
-
157
-
158
- ## Model Examination [optional]
159
-
160
- <!-- Relevant interpretability work for the model goes here -->
161
-
162
- [More Information Needed]
163
-
164
- ## Environmental Impact
165
-
166
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
167
-
168
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
169
-
170
- - **Hardware Type:** [More Information Needed]
171
- - **Hours used:** [More Information Needed]
172
- - **Cloud Provider:** [More Information Needed]
173
- - **Compute Region:** [More Information Needed]
174
- - **Carbon Emitted:** [More Information Needed]
175
-
176
- ## Technical Specifications [optional]
177
-
178
- ### Model Architecture and Objective
179
-
180
- [More Information Needed]
181
-
182
- ### Compute Infrastructure
183
-
184
- [More Information Needed]
185
-
186
- #### Hardware
187
-
188
- [More Information Needed]
189
-
190
- #### Software
191
-
192
- [More Information Needed]
193
-
194
- ## Citation [optional]
195
-
196
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
197
-
198
- **BibTeX:**
199
-
200
- [More Information Needed]
201
-
202
- **APA:**
203
-
204
- [More Information Needed]
205
-
206
- ## Glossary [optional]
207
-
208
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
209
-
210
- [More Information Needed]
211
-
212
- ## More Information [optional]
213
-
214
- [More Information Needed]
215
 
216
  ## Model Card Authors [optional]
217
 
218
- [More Information Needed]
219
-
220
- ## Model Card Contact
 
 
 
 
 
221
 
222
- [More Information Needed]
 
12
  ---
13
  # Model Card for Model ID
14
 
15
+ This is a Named Entity Recognition model fine-tuned for public entities:
16
+ - Politicians
17
+ - Parties
18
+ - Authorities
19
+ - Media
20
+ - Journalists
21
 
22
  ## Model Details
23
+ Public Entity Recognition (PER). PER is a domainspecific version of NER, that is trained for five entities types that are common to public discourse: politicians, parties, authorities, media, and journalists. PER can be used for preprocessing documents, in a pipeline with other classifiers or directly for analyzing information in texts. The taxonomy for PER is taken from the database of (German) public speakers (Schmidt et al., 2023) and aims at low-threshold integration into computational social science research.
24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
  ## Bias, Risks, and Limitations
27
 
28
+ The performance for female entities (only applying to politicians and journalists) is slightly below that for male entities. This applies to entities that are referred to by name (Anna-Lena Baerbock/Olaf Scholz) or by profession (Innenministerin/Innenminister).
 
 
29
 
30
  ### Recommendations
31
 
 
39
  from transformers import AutoTokenizer, AutoModelForTokenClassification
40
  from transformers import pipeline
41
 
42
+ model_name = "Sami92/XLM-PER-B"
43
  tokenizer = AutoTokenizer.from_pretrained(model_name)
44
  model = AutoModelForTokenClassification.from_pretrained(model_name)
45
 
46
  ner_pipeline = pipeline("ner", model=model, tokenizer=tokenizer)
47
 
48
+ text = '''
49
+ Nach dem Treffen mit Außenministerin Baerbock betont Israels Premier die Eigenständigkeit seines Landes.
50
+ Baerbock hatte zur Zurückhaltung aufgerufen.
51
+ Nach seinem Treffen mit Außenministerin Annalena Baerbock und dem britischen Außenminister David Cameron dringt der israelische Ministerpräsident Benjamin Netanjahu auf die Unabhängigkeit seines Landes.
52
+ '''
53
 
54
  entities = ner_pipeline(text)
55
 
 
78
 
79
  #### Training Hyperparameters
80
 
81
+ - Learning Rate = 5e-6
82
+ - Scheduler = Reduce learning rate on plateau
83
+ - Batch size = 8
84
+ - Epochs = 20
85
 
 
86
 
 
 
 
87
 
88
  ## Evaluation
89
 
 
97
 
98
  [More Information Needed]
99
 
 
 
 
100
 
101
  [More Information Needed]
102
 
 
110
 
111
  [More Information Needed]
112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
113
 
114
  ## Model Card Authors [optional]
115
 
116
+ @misc{your_model_name,
117
+ author = {Nenno, Sai},
118
+ title = {Public Entity Recognition Model},
119
+ year = {2024},
120
+ publisher = {HuggingFace},
121
+ journal = {HuggingFace Model Repository},
122
+ url = {https://huggingface.co/Sami92/XLM-PER-B}
123
+ }
124
 
125
+ ´