|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" CodeGen model configuration""" |
|
from collections import OrderedDict |
|
from typing import Any, List, Mapping, Optional |
|
|
|
from transformers import PreTrainedTokenizer, TensorType, is_torch_available |
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.onnx import OnnxConfigWithPast, PatchingSpec |
|
from transformers.utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class CodeGenConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`CodeGenModel`]. It is used to instantiate a |
|
CodeGen model according to the specified arguments, defining the model architecture. Instantiating a configuration |
|
with the defaults will yield a similar configuration to that of the CodeGen |
|
[Salesforce/codegen-2B-mono](https://huggingface.co/Salesforce/codegen-2B-mono) architecture. Configuration objects |
|
inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from |
|
[`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 50400): |
|
Vocabulary size of the CodeGen model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`CodeGenModel`]. |
|
n_positions (`int`, *optional*, defaults to 2048): |
|
The maximum sequence length that this model might ever be used with. Typically set this to something large |
|
just in case (e.g., 512 or 1024 or 2048). |
|
n_embd (`int`, *optional*, defaults to 4096): |
|
Dimensionality of the embeddings and hidden states. |
|
n_layer (`int`, *optional*, defaults to 28): |
|
Number of hidden layers in the Transformer encoder. |
|
n_head (`int`, *optional*, defaults to 16): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
rotary_dim (`int`, *optional*, defaults to 64): |
|
Number of dimensions in the embedding that Rotary Position Embedding is applied to. |
|
n_inner (`int`, *optional*, defaults to None): |
|
Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd |
|
activation_function (`str`, *optional*, defaults to `"gelu_new"`): |
|
Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`. |
|
resid_pdrop (`float`, *optional*, defaults to 0.1): |
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. |
|
embd_pdrop (`int`, *optional*, defaults to 0.1): |
|
The dropout ratio for the embeddings. |
|
attn_pdrop (`float`, *optional*, defaults to 0.1): |
|
The dropout ratio for the attention. |
|
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5): |
|
The epsilon to use in the layer normalization layers. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
scale_attn_weights (`bool`, *optional*, defaults to `True`): |
|
Scale attention weights by dividing by sqrt(hidden_size). |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import CodeGenModel, CodeGenConfig |
|
|
|
>>> # Initializing a CodeGen 6B configuration |
|
>>> configuration = CodeGenConfig() |
|
|
|
>>> # Initializing a model from the configuration |
|
>>> model = CodeGenModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
model_type = "codegen" |
|
attribute_map = { |
|
"max_position_embeddings": "n_positions", |
|
"hidden_size": "n_embd", |
|
"num_attention_heads": "n_head", |
|
"num_hidden_layers": "n_layer", |
|
} |
|
|
|
def __init__( |
|
self, |
|
vocab_size=50400, |
|
n_positions=2048, |
|
n_ctx=2048, |
|
n_embd=4096, |
|
n_layer=28, |
|
n_head=16, |
|
rotary_dim=64, |
|
n_inner=None, |
|
activation_function="gelu_new", |
|
resid_pdrop=0.0, |
|
embd_pdrop=0.0, |
|
attn_pdrop=0.0, |
|
layer_norm_epsilon=1e-5, |
|
initializer_range=0.02, |
|
scale_attn_weights=True, |
|
use_cache=True, |
|
bos_token_id=50256, |
|
eos_token_id=50256, |
|
tie_word_embeddings=False, |
|
**kwargs |
|
): |
|
self.vocab_size = vocab_size |
|
self.n_ctx = n_ctx |
|
self.n_positions = n_positions |
|
self.n_embd = n_embd |
|
self.n_layer = n_layer |
|
self.n_head = n_head |
|
self.n_inner = n_inner |
|
self.rotary_dim = rotary_dim |
|
self.activation_function = activation_function |
|
self.resid_pdrop = resid_pdrop |
|
self.embd_pdrop = embd_pdrop |
|
self.attn_pdrop = attn_pdrop |
|
self.layer_norm_epsilon = layer_norm_epsilon |
|
self.initializer_range = initializer_range |
|
self.scale_attn_weights = scale_attn_weights |
|
self.use_cache = use_cache |
|
|
|
self.bos_token_id = bos_token_id |
|
self.eos_token_id = eos_token_id |
|
|
|
super().__init__( |
|
bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs |
|
) |
|
|
|
|
|
|
|
class CodeGenOnnxConfig(OnnxConfigWithPast): |
|
def __init__( |
|
self, |
|
config: PretrainedConfig, |
|
task: str = "default", |
|
patching_specs: List[PatchingSpec] = None, |
|
use_past: bool = False, |
|
): |
|
super().__init__(config, task=task, patching_specs=patching_specs, use_past=use_past) |
|
if not getattr(self._config, "pad_token_id", None): |
|
|
|
self._config.pad_token_id = 0 |
|
|
|
@property |
|
def inputs(self) -> Mapping[str, Mapping[int, str]]: |
|
common_inputs = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}}) |
|
if self.use_past: |
|
self.fill_with_past_key_values_(common_inputs, direction="inputs") |
|
common_inputs["attention_mask"] = {0: "batch", 1: "past_sequence + sequence"} |
|
else: |
|
common_inputs["attention_mask"] = {0: "batch", 1: "sequence"} |
|
|
|
return common_inputs |
|
|
|
@property |
|
def num_layers(self) -> int: |
|
return self._config.n_layer |
|
|
|
@property |
|
def num_attention_heads(self) -> int: |
|
return self._config.n_head |
|
|
|
def generate_dummy_inputs( |
|
self, |
|
tokenizer: PreTrainedTokenizer, |
|
batch_size: int = -1, |
|
seq_length: int = -1, |
|
is_pair: bool = False, |
|
framework: Optional[TensorType] = None, |
|
) -> Mapping[str, Any]: |
|
common_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs( |
|
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework |
|
) |
|
|
|
|
|
ordered_inputs = OrderedDict({"input_ids": common_inputs["input_ids"]}) |
|
|
|
|
|
if self.use_past: |
|
if not is_torch_available(): |
|
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") |
|
else: |
|
import torch |
|
|
|
batch, seqlen = common_inputs["input_ids"].shape |
|
|
|
past_key_values_length = seqlen + 2 |
|
past_shape = ( |
|
batch, |
|
self.num_attention_heads, |
|
past_key_values_length, |
|
self._config.hidden_size // self.num_attention_heads, |
|
) |
|
ordered_inputs["past_key_values"] = [ |
|
(torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(self.num_layers) |
|
] |
|
|
|
ordered_inputs["attention_mask"] = common_inputs["attention_mask"] |
|
if self.use_past: |
|
mask_dtype = ordered_inputs["attention_mask"].dtype |
|
ordered_inputs["attention_mask"] = torch.cat( |
|
[ordered_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1 |
|
) |
|
|
|
return ordered_inputs |
|
|
|
@property |
|
def default_onnx_opset(self) -> int: |
|
return 13 |
|
|