shashank1303
commited on
Commit
·
c5760fb
1
Parent(s):
7ca0784
First Commit : Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- Proximal Policy Optimization.zip +3 -0
- Proximal Policy Optimization/_stable_baselines3_version +1 -0
- Proximal Policy Optimization/data +94 -0
- Proximal Policy Optimization/policy.optimizer.pth +3 -0
- Proximal Policy Optimization/policy.pth +3 -0
- Proximal Policy Optimization/pytorch_variables.pth +3 -0
- Proximal Policy Optimization/system_info.txt +7 -0
- README.md +28 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
Proximal Policy Optimization.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0f2663130cdbde92b0aee1abfa1a779e7caa629ea9c412bd0e442a77f4bd163b
|
3 |
+
size 144024
|
Proximal Policy Optimization/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
Proximal Policy Optimization/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f201e37eb90>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f201e37ec20>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f201e37ecb0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f201e37ed40>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f201e37edd0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f201e37ee60>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f201e37eef0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f201e37ef80>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f201e382050>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f201e3820e0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f201e382170>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f201e424150>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651689209.9181235,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOgioL7n/Di940m6vEGSiTxsHJY+mDh8vQAAgD8AAIA/TasSvhwjULw+URW9o3MzPRFvZ7yj4GO6AACAPwAAgD8aYpe++i4ovf221LzjkzO7x8OTPmouBjwAAIA/AACAPwAj5jzOyoC8VbsQvcZKIz2TZuS94Hz+PQAAgD8AAIA/DdIOvjqGoz5NeGc9bBaBvvL6UjyyrVE9AAAAAAAAAADa1p69B6jLPtZZdL1rrqe+QyOmPGn2grwAAAAAAAAAAAAHg7yvTbI/1uVzvbb/u7509yE9rQAcPQAAAAAAAAAA5iyovjFXSr3jZoS4hQpkt5W+hj660v43AACAPwAAgD86TXi+D+89vOvzlrsLAXa5DHefPc85szoAAIA/AACAP02YFD5hVrg7XyWCvQBOwbtqV089K/qwvAAAgD8AAIA/jaEAvhQUmjvmr349bK8pvPKQOr38HRo9AACAPwAAgD+ajRQ8UsD4uTKEuDqdTQQ2K1LkOvbH1bkAAIA/AACAP42mtz32gGe64KpwOw1afrbNlAq7BvGKugAAgD8AAIA/M0WzPB8lmbkwvK87/11JOGj5Arwn3wG4AACAPwAAgD9m6ps8XJNOuoJ047oKXSC2vLLzOdAiAToAAIA/AACAP2aIjzxc7wq69TfpO1YJuTfxiHg7kBOdNgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVbhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAAFr1S58Y0CUhpRSlIwBbJRN6AOMAXSUR0CfQYa6STyKdX2UKGgGaAloD0MI7BNAMbKoQ8CUhpRSlGgVS5ZoFkdAn0G+SbH6uXV9lChoBmgJaA9DCFCNl24S32RAlIaUUpRoFU3oA2gWR0CfQixeb/fgdX2UKGgGaAloD0MIxt6LL9q7X0CUhpRSlGgVTegDaBZHQJ9Eyqn3ta91fZQoaAZoCWgPQwg8hPHTuMcgQJSGlFKUaBVL72gWR0CfRcWXC0ngdX2UKGgGaAloD0MIzTy5psBFY0CUhpRSlGgVTegDaBZHQJ9sWYhMajx1fZQoaAZoCWgPQwgO+WcG8UkxQJSGlFKUaBVL42gWR0Cfb096kZaWdX2UKGgGaAloD0MIaccNv5t+NECUhpRSlGgVS+hoFkdAn3BWO6unuXV9lChoBmgJaA9DCKt2TUjr4mFAlIaUUpRoFU3oA2gWR0Cfcb+3H7xedX2UKGgGaAloD0MI6ukj8AekZUCUhpRSlGgVTegDaBZHQJ9yUj6eoUB1fZQoaAZoCWgPQwjLSpNS0PlgQJSGlFKUaBVN6ANoFkdAn3qdOqNp/XV9lChoBmgJaA9DCA3FHW/yFznAlIaUUpRoFUvQaBZHQJ+K/Khcqvx1fZQoaAZoCWgPQwjFWKZfIpFXQJSGlFKUaBVN6ANoFkdAn5BUT101ZXV9lChoBmgJaA9DCKoPJO+cOWtAlIaUUpRoFU15AmgWR0Cfk2EG7jDLdX2UKGgGaAloD0MI9ifxuRMTYUCUhpRSlGgVTegDaBZHQJ+W32nKnvV1fZQoaAZoCWgPQwiuYYbGE1NjQJSGlFKUaBVN6ANoFkdAn5gDin5zo3V9lChoBmgJaA9DCMgKfhtigk5AlIaUUpRoFU3oA2gWR0CfmUGhEjPfdX2UKGgGaAloD0MIuTgqN1EpXECUhpRSlGgVTegDaBZHQJ+gT0Bfa6B1fZQoaAZoCWgPQwjbpnhc1BNiQJSGlFKUaBVN6ANoFkdAn6RYxcmjTXV9lChoBmgJaA9DCEHV6NUAqltAlIaUUpRoFU3oA2gWR0CfrManJkoXdX2UKGgGaAloD0MICDvFqsEjY0CUhpRSlGgVTegDaBZHQJ+tWCPIXCV1fZQoaAZoCWgPQwi5q1eR0QVDQJSGlFKUaBVLsmgWR0CfrrcMEzO5dX2UKGgGaAloD0MICks8oGwDYECUhpRSlGgVTegDaBZHQJ+yTfbblBB1fZQoaAZoCWgPQwhA+5EisupiQJSGlFKUaBVN6ANoFkdAn9mSU9pyqHV9lChoBmgJaA9DCExsPq4N3VtAlIaUUpRoFU3oA2gWR0Cf3Qe8PFvRdX2UKGgGaAloD0MIoz7JHTZzYECUhpRSlGgVTegDaBZHQJ/eL/DLr5Z1fZQoaAZoCWgPQwgkgQabOhlbQJSGlFKUaBVN6ANoFkdAn9+xPfsNUnV9lChoBmgJaA9DCOP9uP3y81lAlIaUUpRoFU3oA2gWR0Cf4FOGj9GadX2UKGgGaAloD0MIqYdodAdmYECUhpRSlGgVTegDaBZHQJ/5kKRdQfp1fZQoaAZoCWgPQwgcBvNXyExXQJSGlFKUaBVN6ANoFkdAn/71X/5tWXV9lChoBmgJaA9DCONve4LEU2JAlIaUUpRoFU3oA2gWR0CgAO/m9xp+dX2UKGgGaAloD0MIHvzEAfTnMsCUhpRSlGgVS3FoFkdAoAGuIRAbAHV9lChoBmgJaA9DCFZ+GYwR72FAlIaUUpRoFU3oA2gWR0CgApETg2qDdX2UKGgGaAloD0MIHsU56ujgVUCUhpRSlGgVTegDaBZHQKADDgJC0F91fZQoaAZoCWgPQwiO6J51jR1dQJSGlFKUaBVN6ANoFkdAoAOZ80DU3HV9lChoBmgJaA9DCK/t7ZbkKCvAlIaUUpRoFUtgaBZHQKAF7JcPe551fZQoaAZoCWgPQwj6RJ4kXZpmQJSGlFKUaBVN6ANoFkdAoAiZlJ6IFnV9lChoBmgJaA9DCE0tW+uLGmBAlIaUUpRoFU3oA2gWR0CgDJJSJj2BdX2UKGgGaAloD0MI0hqDTgiaXkCUhpRSlGgVTegDaBZHQKAM2+gUUPB1fZQoaAZoCWgPQwjLD1zliXpmQJSGlFKUaBVN6ANoFkdAoA2UK7ZnMHV9lChoBmgJaA9DCCJt409Unl1AlIaUUpRoFU3oA2gWR0CgD0pEH+qBdX2UKGgGaAloD0MIsdtnlZmQYUCUhpRSlGgVTegDaBZHQKAi7xEORT11fZQoaAZoCWgPQwhBRkCFI29cQJSGlFKUaBVN6ANoFkdAoCTByCFsYXV9lChoBmgJaA9DCKUTCaaaZmNAlIaUUpRoFU3oA2gWR0CgJVWWIGhVdX2UKGgGaAloD0MIOC7jpgZ6AMCUhpRSlGgVS+ZoFkdAoCWoDRtxdnV9lChoBmgJaA9DCMBZSpaTXF1AlIaUUpRoFU3oA2gWR0CgJhtfXwsodX2UKGgGaAloD0MIjbW/sz2JY0CUhpRSlGgVTegDaBZHQKAmZJq7Acl1fZQoaAZoCWgPQwjIe9XKhN8IwJSGlFKUaBVL22gWR0CgLbQYLsrvdX2UKGgGaAloD0MIz/kpjgPTTECUhpRSlGgVS/JoFkdAoC5Ql8gIQnV9lChoBmgJaA9DCAXAeAYNAT9AlIaUUpRoFUvtaBZHQKAvWMXrMTx1fZQoaAZoCWgPQwj7zFmfckhiQJSGlFKUaBVN6ANoFkdAoDWF14gRsnV9lChoBmgJaA9DCCjzj77JAWFAlIaUUpRoFU3oA2gWR0CgNwrsjVx0dX2UKGgGaAloD0MIFJhO6za6X0CUhpRSlGgVTegDaBZHQKA31b9qDbt1fZQoaAZoCWgPQwiUUPpCyEtCQJSGlFKUaBVL02gWR0CgOJJrk8zRdX2UKGgGaAloD0MIP41785v1YUCUhpRSlGgVTegDaBZHQKA5TghKUV11fZQoaAZoCWgPQwjzyvW2GZ9jQJSGlFKUaBVN6ANoFkdAoDnc1ZTya3V9lChoBmgJaA9DCBssnKT5pGNAlIaUUpRoFU3oA2gWR0CgPDy0a6z3dX2UKGgGaAloD0MInUfF/x0BMkCUhpRSlGgVS89oFkdAoD1sq8UVSHV9lChoBmgJaA9DCIV4JF6ermNAlIaUUpRoFU3oA2gWR0CgPrC2MKkVdX2UKGgGaAloD0MIY7Mj1XdOK8CUhpRSlGgVS9doFkdAoEEukadc0XV9lChoBmgJaA9DCFwf1hu1/1tAlIaUUpRoFU3oA2gWR0CgQimC7K7qdX2UKGgGaAloD0MI7Q+U2/b4Y0CUhpRSlGgVTegDaBZHQKBCZ5JK8L91fZQoaAZoCWgPQwi3XWiu02paQJSGlFKUaBVN6ANoFkdAoESDu0CzTnV9lChoBmgJaA9DCFT/IJIhKmBAlIaUUpRoFU3oA2gWR0CgVxY0l7dBdX2UKGgGaAloD0MIGRwlr84JIsCUhpRSlGgVS/xoFkdAoFhFqagElnV9lChoBmgJaA9DCAw6IXRQJGNAlIaUUpRoFU3oA2gWR0CgWH5PEbYLdX2UKGgGaAloD0MIQEzChTx8WkCUhpRSlGgVTegDaBZHQKBZmfzSThZ1fZQoaAZoCWgPQwgvMgG/RrIUQJSGlFKUaBVNDAFoFkdAoFmh6a9bo3V9lChoBmgJaA9DCBQF+kSeZChAlIaUUpRoFUvvaBZHQKBgI0hNdqt1fZQoaAZoCWgPQwgm4NdIEnVhQJSGlFKUaBVN6ANoFkdAoGBKDujRD3V9lChoBmgJaA9DCONQvwtbGGZAlIaUUpRoFU3oA2gWR0CgYMZaePJadX2UKGgGaAloD0MIkKLO3MNWZECUhpRSlGgVTegDaBZHQKBoaa7VawF1fZQoaAZoCWgPQwitTWN7LaJfQJSGlFKUaBVN6ANoFkdAoGkiADq4Y3V9lChoBmgJaA9DCISgo1UtdmVAlIaUUpRoFU3oA2gWR0CgadSqMm4RdX2UKGgGaAloD0MIisvxCkQJXECUhpRSlGgVTegDaBZHQKBqhsUIsy11fZQoaAZoCWgPQwgo1xTI7GxfQJSGlFKUaBVN6ANoFkdAoG2pJTVDr3V9lChoBmgJaA9DCM6JPbSPzmRAlIaUUpRoFU3oA2gWR0CgbwJBX0XhdX2UKGgGaAloD0MIlbVN8TjOYECUhpRSlGgVTegDaBZHQKBwbKzRhMJ1fZQoaAZoCWgPQwjGFRdH5U4lQJSGlFKUaBVL3WgWR0CgcsoESuhcdX2UKGgGaAloD0MIpUkp6PYsRkCUhpRSlGgVTegDaBZHQKB0c7NB4Ux1fZQoaAZoCWgPQwhjCWtj7NhdQJSGlFKUaBVN6ANoFkdAoHbxhScbznV9lChoBmgJaA9DCB4X1SKiXDdAlIaUUpRoFU0RAWgWR0Cgd+zVDrqudX2UKGgGaAloD0MIs33IW65mYECUhpRSlGgVTegDaBZHQKB7Tl+Vkc11fZQoaAZoCWgPQwikwW1tYZRkQJSGlFKUaBVN6ANoFkdAoIurpaA4GXV9lChoBmgJaA9DCCocQSrFBGBAlIaUUpRoFU3oA2gWR0CgjUUZFXq8dX2UKGgGaAloD0MIhJz3/3HQW0CUhpRSlGgVTegDaBZHQKCNT1klNUR1fZQoaAZoCWgPQwhlpUkp6AdcQJSGlFKUaBVN6ANoFkdAoJSLQb+98XV9lChoBmgJaA9DCJks7j8y0l1AlIaUUpRoFU3oA2gWR0CglLIRqXWwdX2UKGgGaAloD0MIs7eU88VFYECUhpRSlGgVTegDaBZHQKCVLtIkJKJ1fZQoaAZoCWgPQwgShCug0JphQJSGlFKUaBVN6ANoFkdAoJxM8TzunnV9lChoBmgJaA9DCDArFOl+fWNAlIaUUpRoFU3oA2gWR0CgnPx9PUKBdX2UKGgGaAloD0MIsOYAwZyIY0CUhpRSlGgVTegDaBZHQKCdl7jT8YR1fZQoaAZoCWgPQwj3d7ZHbwJeQJSGlFKUaBVN6ANoFkdAoKLKOWBz3nV9lChoBmgJaA9DCI23lV4bRGFAlIaUUpRoFU3oA2gWR0CgpEBFd9lVdX2UKGgGaAloD0MIfxZLkXzVOcCUhpRSlGgVS/loFkdAoKW9DD0lJHV9lChoBmgJaA9DCFBR9Sude2JAlIaUUpRoFU3oA2gWR0CgprLEk0JodX2UKGgGaAloD0MIrYTukjjPYUCUhpRSlGgVTegDaBZHQKCoVzFuNxV1fZQoaAZoCWgPQwiV9DC0OhZcQJSGlFKUaBVN6ANoFkdAoKrAswtap3V9lChoBmgJaA9DCCyeeqRBYmBAlIaUUpRoFU3oA2gWR0Cgq63JYDDCdX2UKGgGaAloD0MImzxlNd1bYkCUhpRSlGgVTegDaBZHQKCu5Kifxtp1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
Proximal Policy Optimization/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:216e7b1707f344d7844590f45c5f4989fe2f1a34d8bffb7ffa33cbb20411426e
|
3 |
+
size 84829
|
Proximal Policy Optimization/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8d0283c4237f5d770fb2cd6fbb97fcfc667edea0215711754fd859f9709612c1
|
3 |
+
size 43201
|
Proximal Policy Optimization/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
Proximal Policy Optimization/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: ppo-LunarLander-v2
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 203.94 +/- 26.92
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **ppo-LunarLander-v2** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **ppo-LunarLander-v2** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f201e37eb90>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f201e37ec20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f201e37ecb0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f201e37ed40>", "_build": "<function ActorCriticPolicy._build at 0x7f201e37edd0>", "forward": "<function ActorCriticPolicy.forward at 0x7f201e37ee60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f201e37eef0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f201e37ef80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f201e382050>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f201e3820e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f201e382170>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f201e424150>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651689209.9181235, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOgioL7n/Di940m6vEGSiTxsHJY+mDh8vQAAgD8AAIA/TasSvhwjULw+URW9o3MzPRFvZ7yj4GO6AACAPwAAgD8aYpe++i4ovf221LzjkzO7x8OTPmouBjwAAIA/AACAPwAj5jzOyoC8VbsQvcZKIz2TZuS94Hz+PQAAgD8AAIA/DdIOvjqGoz5NeGc9bBaBvvL6UjyyrVE9AAAAAAAAAADa1p69B6jLPtZZdL1rrqe+QyOmPGn2grwAAAAAAAAAAAAHg7yvTbI/1uVzvbb/u7509yE9rQAcPQAAAAAAAAAA5iyovjFXSr3jZoS4hQpkt5W+hj660v43AACAPwAAgD86TXi+D+89vOvzlrsLAXa5DHefPc85szoAAIA/AACAP02YFD5hVrg7XyWCvQBOwbtqV089K/qwvAAAgD8AAIA/jaEAvhQUmjvmr349bK8pvPKQOr38HRo9AACAPwAAgD+ajRQ8UsD4uTKEuDqdTQQ2K1LkOvbH1bkAAIA/AACAP42mtz32gGe64KpwOw1afrbNlAq7BvGKugAAgD8AAIA/M0WzPB8lmbkwvK87/11JOGj5Arwn3wG4AACAPwAAgD9m6ps8XJNOuoJ047oKXSC2vLLzOdAiAToAAIA/AACAP2aIjzxc7wq69TfpO1YJuTfxiHg7kBOdNgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVbhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAAFr1S58Y0CUhpRSlIwBbJRN6AOMAXSUR0CfQYa6STyKdX2UKGgGaAloD0MI7BNAMbKoQ8CUhpRSlGgVS5ZoFkdAn0G+SbH6uXV9lChoBmgJaA9DCFCNl24S32RAlIaUUpRoFU3oA2gWR0CfQixeb/fgdX2UKGgGaAloD0MIxt6LL9q7X0CUhpRSlGgVTegDaBZHQJ9Eyqn3ta91fZQoaAZoCWgPQwg8hPHTuMcgQJSGlFKUaBVL72gWR0CfRcWXC0ngdX2UKGgGaAloD0MIzTy5psBFY0CUhpRSlGgVTegDaBZHQJ9sWYhMajx1fZQoaAZoCWgPQwgO+WcG8UkxQJSGlFKUaBVL42gWR0Cfb096kZaWdX2UKGgGaAloD0MIaccNv5t+NECUhpRSlGgVS+hoFkdAn3BWO6unuXV9lChoBmgJaA9DCKt2TUjr4mFAlIaUUpRoFU3oA2gWR0Cfcb+3H7xedX2UKGgGaAloD0MI6ukj8AekZUCUhpRSlGgVTegDaBZHQJ9yUj6eoUB1fZQoaAZoCWgPQwjLSpNS0PlgQJSGlFKUaBVN6ANoFkdAn3qdOqNp/XV9lChoBmgJaA9DCA3FHW/yFznAlIaUUpRoFUvQaBZHQJ+K/Khcqvx1fZQoaAZoCWgPQwjFWKZfIpFXQJSGlFKUaBVN6ANoFkdAn5BUT101ZXV9lChoBmgJaA9DCKoPJO+cOWtAlIaUUpRoFU15AmgWR0Cfk2EG7jDLdX2UKGgGaAloD0MI9ifxuRMTYUCUhpRSlGgVTegDaBZHQJ+W32nKnvV1fZQoaAZoCWgPQwiuYYbGE1NjQJSGlFKUaBVN6ANoFkdAn5gDin5zo3V9lChoBmgJaA9DCMgKfhtigk5AlIaUUpRoFU3oA2gWR0CfmUGhEjPfdX2UKGgGaAloD0MIuTgqN1EpXECUhpRSlGgVTegDaBZHQJ+gT0Bfa6B1fZQoaAZoCWgPQwjbpnhc1BNiQJSGlFKUaBVN6ANoFkdAn6RYxcmjTXV9lChoBmgJaA9DCEHV6NUAqltAlIaUUpRoFU3oA2gWR0CfrManJkoXdX2UKGgGaAloD0MICDvFqsEjY0CUhpRSlGgVTegDaBZHQJ+tWCPIXCV1fZQoaAZoCWgPQwi5q1eR0QVDQJSGlFKUaBVLsmgWR0CfrrcMEzO5dX2UKGgGaAloD0MICks8oGwDYECUhpRSlGgVTegDaBZHQJ+yTfbblBB1fZQoaAZoCWgPQwhA+5EisupiQJSGlFKUaBVN6ANoFkdAn9mSU9pyqHV9lChoBmgJaA9DCExsPq4N3VtAlIaUUpRoFU3oA2gWR0Cf3Qe8PFvRdX2UKGgGaAloD0MIoz7JHTZzYECUhpRSlGgVTegDaBZHQJ/eL/DLr5Z1fZQoaAZoCWgPQwgkgQabOhlbQJSGlFKUaBVN6ANoFkdAn9+xPfsNUnV9lChoBmgJaA9DCOP9uP3y81lAlIaUUpRoFU3oA2gWR0Cf4FOGj9GadX2UKGgGaAloD0MIqYdodAdmYECUhpRSlGgVTegDaBZHQJ/5kKRdQfp1fZQoaAZoCWgPQwgcBvNXyExXQJSGlFKUaBVN6ANoFkdAn/71X/5tWXV9lChoBmgJaA9DCONve4LEU2JAlIaUUpRoFU3oA2gWR0CgAO/m9xp+dX2UKGgGaAloD0MIHvzEAfTnMsCUhpRSlGgVS3FoFkdAoAGuIRAbAHV9lChoBmgJaA9DCFZ+GYwR72FAlIaUUpRoFU3oA2gWR0CgApETg2qDdX2UKGgGaAloD0MIHsU56ujgVUCUhpRSlGgVTegDaBZHQKADDgJC0F91fZQoaAZoCWgPQwiO6J51jR1dQJSGlFKUaBVN6ANoFkdAoAOZ80DU3HV9lChoBmgJaA9DCK/t7ZbkKCvAlIaUUpRoFUtgaBZHQKAF7JcPe551fZQoaAZoCWgPQwj6RJ4kXZpmQJSGlFKUaBVN6ANoFkdAoAiZlJ6IFnV9lChoBmgJaA9DCE0tW+uLGmBAlIaUUpRoFU3oA2gWR0CgDJJSJj2BdX2UKGgGaAloD0MI0hqDTgiaXkCUhpRSlGgVTegDaBZHQKAM2+gUUPB1fZQoaAZoCWgPQwjLD1zliXpmQJSGlFKUaBVN6ANoFkdAoA2UK7ZnMHV9lChoBmgJaA9DCCJt409Unl1AlIaUUpRoFU3oA2gWR0CgD0pEH+qBdX2UKGgGaAloD0MIsdtnlZmQYUCUhpRSlGgVTegDaBZHQKAi7xEORT11fZQoaAZoCWgPQwhBRkCFI29cQJSGlFKUaBVN6ANoFkdAoCTByCFsYXV9lChoBmgJaA9DCKUTCaaaZmNAlIaUUpRoFU3oA2gWR0CgJVWWIGhVdX2UKGgGaAloD0MIOC7jpgZ6AMCUhpRSlGgVS+ZoFkdAoCWoDRtxdnV9lChoBmgJaA9DCMBZSpaTXF1AlIaUUpRoFU3oA2gWR0CgJhtfXwsodX2UKGgGaAloD0MIjbW/sz2JY0CUhpRSlGgVTegDaBZHQKAmZJq7Acl1fZQoaAZoCWgPQwjIe9XKhN8IwJSGlFKUaBVL22gWR0CgLbQYLsrvdX2UKGgGaAloD0MIz/kpjgPTTECUhpRSlGgVS/JoFkdAoC5Ql8gIQnV9lChoBmgJaA9DCAXAeAYNAT9AlIaUUpRoFUvtaBZHQKAvWMXrMTx1fZQoaAZoCWgPQwj7zFmfckhiQJSGlFKUaBVN6ANoFkdAoDWF14gRsnV9lChoBmgJaA9DCCjzj77JAWFAlIaUUpRoFU3oA2gWR0CgNwrsjVx0dX2UKGgGaAloD0MIFJhO6za6X0CUhpRSlGgVTegDaBZHQKA31b9qDbt1fZQoaAZoCWgPQwiUUPpCyEtCQJSGlFKUaBVL02gWR0CgOJJrk8zRdX2UKGgGaAloD0MIP41785v1YUCUhpRSlGgVTegDaBZHQKA5TghKUV11fZQoaAZoCWgPQwjzyvW2GZ9jQJSGlFKUaBVN6ANoFkdAoDnc1ZTya3V9lChoBmgJaA9DCBssnKT5pGNAlIaUUpRoFU3oA2gWR0CgPDy0a6z3dX2UKGgGaAloD0MInUfF/x0BMkCUhpRSlGgVS89oFkdAoD1sq8UVSHV9lChoBmgJaA9DCIV4JF6ermNAlIaUUpRoFU3oA2gWR0CgPrC2MKkVdX2UKGgGaAloD0MIY7Mj1XdOK8CUhpRSlGgVS9doFkdAoEEukadc0XV9lChoBmgJaA9DCFwf1hu1/1tAlIaUUpRoFU3oA2gWR0CgQimC7K7qdX2UKGgGaAloD0MI7Q+U2/b4Y0CUhpRSlGgVTegDaBZHQKBCZ5JK8L91fZQoaAZoCWgPQwi3XWiu02paQJSGlFKUaBVN6ANoFkdAoESDu0CzTnV9lChoBmgJaA9DCFT/IJIhKmBAlIaUUpRoFU3oA2gWR0CgVxY0l7dBdX2UKGgGaAloD0MIGRwlr84JIsCUhpRSlGgVS/xoFkdAoFhFqagElnV9lChoBmgJaA9DCAw6IXRQJGNAlIaUUpRoFU3oA2gWR0CgWH5PEbYLdX2UKGgGaAloD0MIQEzChTx8WkCUhpRSlGgVTegDaBZHQKBZmfzSThZ1fZQoaAZoCWgPQwgvMgG/RrIUQJSGlFKUaBVNDAFoFkdAoFmh6a9bo3V9lChoBmgJaA9DCBQF+kSeZChAlIaUUpRoFUvvaBZHQKBgI0hNdqt1fZQoaAZoCWgPQwgm4NdIEnVhQJSGlFKUaBVN6ANoFkdAoGBKDujRD3V9lChoBmgJaA9DCONQvwtbGGZAlIaUUpRoFU3oA2gWR0CgYMZaePJadX2UKGgGaAloD0MIkKLO3MNWZECUhpRSlGgVTegDaBZHQKBoaa7VawF1fZQoaAZoCWgPQwitTWN7LaJfQJSGlFKUaBVN6ANoFkdAoGkiADq4Y3V9lChoBmgJaA9DCISgo1UtdmVAlIaUUpRoFU3oA2gWR0CgadSqMm4RdX2UKGgGaAloD0MIisvxCkQJXECUhpRSlGgVTegDaBZHQKBqhsUIsy11fZQoaAZoCWgPQwgo1xTI7GxfQJSGlFKUaBVN6ANoFkdAoG2pJTVDr3V9lChoBmgJaA9DCM6JPbSPzmRAlIaUUpRoFU3oA2gWR0CgbwJBX0XhdX2UKGgGaAloD0MIlbVN8TjOYECUhpRSlGgVTegDaBZHQKBwbKzRhMJ1fZQoaAZoCWgPQwjGFRdH5U4lQJSGlFKUaBVL3WgWR0CgcsoESuhcdX2UKGgGaAloD0MIpUkp6PYsRkCUhpRSlGgVTegDaBZHQKB0c7NB4Ux1fZQoaAZoCWgPQwhjCWtj7NhdQJSGlFKUaBVN6ANoFkdAoHbxhScbznV9lChoBmgJaA9DCB4X1SKiXDdAlIaUUpRoFU0RAWgWR0Cgd+zVDrqudX2UKGgGaAloD0MIs33IW65mYECUhpRSlGgVTegDaBZHQKB7Tl+Vkc11fZQoaAZoCWgPQwikwW1tYZRkQJSGlFKUaBVN6ANoFkdAoIurpaA4GXV9lChoBmgJaA9DCCocQSrFBGBAlIaUUpRoFU3oA2gWR0CgjUUZFXq8dX2UKGgGaAloD0MIhJz3/3HQW0CUhpRSlGgVTegDaBZHQKCNT1klNUR1fZQoaAZoCWgPQwhlpUkp6AdcQJSGlFKUaBVN6ANoFkdAoJSLQb+98XV9lChoBmgJaA9DCJks7j8y0l1AlIaUUpRoFU3oA2gWR0CglLIRqXWwdX2UKGgGaAloD0MIs7eU88VFYECUhpRSlGgVTegDaBZHQKCVLtIkJKJ1fZQoaAZoCWgPQwgShCug0JphQJSGlFKUaBVN6ANoFkdAoJxM8TzunnV9lChoBmgJaA9DCDArFOl+fWNAlIaUUpRoFU3oA2gWR0CgnPx9PUKBdX2UKGgGaAloD0MIsOYAwZyIY0CUhpRSlGgVTegDaBZHQKCdl7jT8YR1fZQoaAZoCWgPQwj3d7ZHbwJeQJSGlFKUaBVN6ANoFkdAoKLKOWBz3nV9lChoBmgJaA9DCI23lV4bRGFAlIaUUpRoFU3oA2gWR0CgpEBFd9lVdX2UKGgGaAloD0MIfxZLkXzVOcCUhpRSlGgVS/loFkdAoKW9DD0lJHV9lChoBmgJaA9DCFBR9Sude2JAlIaUUpRoFU3oA2gWR0CgprLEk0JodX2UKGgGaAloD0MIrYTukjjPYUCUhpRSlGgVTegDaBZHQKCoVzFuNxV1fZQoaAZoCWgPQwiV9DC0OhZcQJSGlFKUaBVN6ANoFkdAoKrAswtap3V9lChoBmgJaA9DCCyeeqRBYmBAlIaUUpRoFU3oA2gWR0Cgq63JYDDCdX2UKGgGaAloD0MImzxlNd1bYkCUhpRSlGgVTegDaBZHQKCu5Kifxtp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:807ce0f37005f1908bc38282e7f0aac820189e12279eae7cf371478862a4e933
|
3 |
+
size 252708
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 203.94164354418996, "std_reward": 26.91878563297683, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-04T19:03:47.431721"}
|