shashank1303 commited on
Commit
c5760fb
·
1 Parent(s): 7ca0784

First Commit : Upload PPO LunarLander-v2 trained agent

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
Proximal Policy Optimization.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0f2663130cdbde92b0aee1abfa1a779e7caa629ea9c412bd0e442a77f4bd163b
3
+ size 144024
Proximal Policy Optimization/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
Proximal Policy Optimization/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f201e37eb90>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f201e37ec20>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f201e37ecb0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f201e37ed40>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f201e37edd0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f201e37ee60>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f201e37eef0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f201e37ef80>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f201e382050>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f201e3820e0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f201e382170>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f201e424150>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 507904,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1651689209.9181235,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOgioL7n/Di940m6vEGSiTxsHJY+mDh8vQAAgD8AAIA/TasSvhwjULw+URW9o3MzPRFvZ7yj4GO6AACAPwAAgD8aYpe++i4ovf221LzjkzO7x8OTPmouBjwAAIA/AACAPwAj5jzOyoC8VbsQvcZKIz2TZuS94Hz+PQAAgD8AAIA/DdIOvjqGoz5NeGc9bBaBvvL6UjyyrVE9AAAAAAAAAADa1p69B6jLPtZZdL1rrqe+QyOmPGn2grwAAAAAAAAAAAAHg7yvTbI/1uVzvbb/u7509yE9rQAcPQAAAAAAAAAA5iyovjFXSr3jZoS4hQpkt5W+hj660v43AACAPwAAgD86TXi+D+89vOvzlrsLAXa5DHefPc85szoAAIA/AACAP02YFD5hVrg7XyWCvQBOwbtqV089K/qwvAAAgD8AAIA/jaEAvhQUmjvmr349bK8pvPKQOr38HRo9AACAPwAAgD+ajRQ8UsD4uTKEuDqdTQQ2K1LkOvbH1bkAAIA/AACAP42mtz32gGe64KpwOw1afrbNlAq7BvGKugAAgD8AAIA/M0WzPB8lmbkwvK87/11JOGj5Arwn3wG4AACAPwAAgD9m6ps8XJNOuoJ047oKXSC2vLLzOdAiAToAAIA/AACAP2aIjzxc7wq69TfpO1YJuTfxiHg7kBOdNgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVbhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAAFr1S58Y0CUhpRSlIwBbJRN6AOMAXSUR0CfQYa6STyKdX2UKGgGaAloD0MI7BNAMbKoQ8CUhpRSlGgVS5ZoFkdAn0G+SbH6uXV9lChoBmgJaA9DCFCNl24S32RAlIaUUpRoFU3oA2gWR0CfQixeb/fgdX2UKGgGaAloD0MIxt6LL9q7X0CUhpRSlGgVTegDaBZHQJ9Eyqn3ta91fZQoaAZoCWgPQwg8hPHTuMcgQJSGlFKUaBVL72gWR0CfRcWXC0ngdX2UKGgGaAloD0MIzTy5psBFY0CUhpRSlGgVTegDaBZHQJ9sWYhMajx1fZQoaAZoCWgPQwgO+WcG8UkxQJSGlFKUaBVL42gWR0Cfb096kZaWdX2UKGgGaAloD0MIaccNv5t+NECUhpRSlGgVS+hoFkdAn3BWO6unuXV9lChoBmgJaA9DCKt2TUjr4mFAlIaUUpRoFU3oA2gWR0Cfcb+3H7xedX2UKGgGaAloD0MI6ukj8AekZUCUhpRSlGgVTegDaBZHQJ9yUj6eoUB1fZQoaAZoCWgPQwjLSpNS0PlgQJSGlFKUaBVN6ANoFkdAn3qdOqNp/XV9lChoBmgJaA9DCA3FHW/yFznAlIaUUpRoFUvQaBZHQJ+K/Khcqvx1fZQoaAZoCWgPQwjFWKZfIpFXQJSGlFKUaBVN6ANoFkdAn5BUT101ZXV9lChoBmgJaA9DCKoPJO+cOWtAlIaUUpRoFU15AmgWR0Cfk2EG7jDLdX2UKGgGaAloD0MI9ifxuRMTYUCUhpRSlGgVTegDaBZHQJ+W32nKnvV1fZQoaAZoCWgPQwiuYYbGE1NjQJSGlFKUaBVN6ANoFkdAn5gDin5zo3V9lChoBmgJaA9DCMgKfhtigk5AlIaUUpRoFU3oA2gWR0CfmUGhEjPfdX2UKGgGaAloD0MIuTgqN1EpXECUhpRSlGgVTegDaBZHQJ+gT0Bfa6B1fZQoaAZoCWgPQwjbpnhc1BNiQJSGlFKUaBVN6ANoFkdAn6RYxcmjTXV9lChoBmgJaA9DCEHV6NUAqltAlIaUUpRoFU3oA2gWR0CfrManJkoXdX2UKGgGaAloD0MICDvFqsEjY0CUhpRSlGgVTegDaBZHQJ+tWCPIXCV1fZQoaAZoCWgPQwi5q1eR0QVDQJSGlFKUaBVLsmgWR0CfrrcMEzO5dX2UKGgGaAloD0MICks8oGwDYECUhpRSlGgVTegDaBZHQJ+yTfbblBB1fZQoaAZoCWgPQwhA+5EisupiQJSGlFKUaBVN6ANoFkdAn9mSU9pyqHV9lChoBmgJaA9DCExsPq4N3VtAlIaUUpRoFU3oA2gWR0Cf3Qe8PFvRdX2UKGgGaAloD0MIoz7JHTZzYECUhpRSlGgVTegDaBZHQJ/eL/DLr5Z1fZQoaAZoCWgPQwgkgQabOhlbQJSGlFKUaBVN6ANoFkdAn9+xPfsNUnV9lChoBmgJaA9DCOP9uP3y81lAlIaUUpRoFU3oA2gWR0Cf4FOGj9GadX2UKGgGaAloD0MIqYdodAdmYECUhpRSlGgVTegDaBZHQJ/5kKRdQfp1fZQoaAZoCWgPQwgcBvNXyExXQJSGlFKUaBVN6ANoFkdAn/71X/5tWXV9lChoBmgJaA9DCONve4LEU2JAlIaUUpRoFU3oA2gWR0CgAO/m9xp+dX2UKGgGaAloD0MIHvzEAfTnMsCUhpRSlGgVS3FoFkdAoAGuIRAbAHV9lChoBmgJaA9DCFZ+GYwR72FAlIaUUpRoFU3oA2gWR0CgApETg2qDdX2UKGgGaAloD0MIHsU56ujgVUCUhpRSlGgVTegDaBZHQKADDgJC0F91fZQoaAZoCWgPQwiO6J51jR1dQJSGlFKUaBVN6ANoFkdAoAOZ80DU3HV9lChoBmgJaA9DCK/t7ZbkKCvAlIaUUpRoFUtgaBZHQKAF7JcPe551fZQoaAZoCWgPQwj6RJ4kXZpmQJSGlFKUaBVN6ANoFkdAoAiZlJ6IFnV9lChoBmgJaA9DCE0tW+uLGmBAlIaUUpRoFU3oA2gWR0CgDJJSJj2BdX2UKGgGaAloD0MI0hqDTgiaXkCUhpRSlGgVTegDaBZHQKAM2+gUUPB1fZQoaAZoCWgPQwjLD1zliXpmQJSGlFKUaBVN6ANoFkdAoA2UK7ZnMHV9lChoBmgJaA9DCCJt409Unl1AlIaUUpRoFU3oA2gWR0CgD0pEH+qBdX2UKGgGaAloD0MIsdtnlZmQYUCUhpRSlGgVTegDaBZHQKAi7xEORT11fZQoaAZoCWgPQwhBRkCFI29cQJSGlFKUaBVN6ANoFkdAoCTByCFsYXV9lChoBmgJaA9DCKUTCaaaZmNAlIaUUpRoFU3oA2gWR0CgJVWWIGhVdX2UKGgGaAloD0MIOC7jpgZ6AMCUhpRSlGgVS+ZoFkdAoCWoDRtxdnV9lChoBmgJaA9DCMBZSpaTXF1AlIaUUpRoFU3oA2gWR0CgJhtfXwsodX2UKGgGaAloD0MIjbW/sz2JY0CUhpRSlGgVTegDaBZHQKAmZJq7Acl1fZQoaAZoCWgPQwjIe9XKhN8IwJSGlFKUaBVL22gWR0CgLbQYLsrvdX2UKGgGaAloD0MIz/kpjgPTTECUhpRSlGgVS/JoFkdAoC5Ql8gIQnV9lChoBmgJaA9DCAXAeAYNAT9AlIaUUpRoFUvtaBZHQKAvWMXrMTx1fZQoaAZoCWgPQwj7zFmfckhiQJSGlFKUaBVN6ANoFkdAoDWF14gRsnV9lChoBmgJaA9DCCjzj77JAWFAlIaUUpRoFU3oA2gWR0CgNwrsjVx0dX2UKGgGaAloD0MIFJhO6za6X0CUhpRSlGgVTegDaBZHQKA31b9qDbt1fZQoaAZoCWgPQwiUUPpCyEtCQJSGlFKUaBVL02gWR0CgOJJrk8zRdX2UKGgGaAloD0MIP41785v1YUCUhpRSlGgVTegDaBZHQKA5TghKUV11fZQoaAZoCWgPQwjzyvW2GZ9jQJSGlFKUaBVN6ANoFkdAoDnc1ZTya3V9lChoBmgJaA9DCBssnKT5pGNAlIaUUpRoFU3oA2gWR0CgPDy0a6z3dX2UKGgGaAloD0MInUfF/x0BMkCUhpRSlGgVS89oFkdAoD1sq8UVSHV9lChoBmgJaA9DCIV4JF6ermNAlIaUUpRoFU3oA2gWR0CgPrC2MKkVdX2UKGgGaAloD0MIY7Mj1XdOK8CUhpRSlGgVS9doFkdAoEEukadc0XV9lChoBmgJaA9DCFwf1hu1/1tAlIaUUpRoFU3oA2gWR0CgQimC7K7qdX2UKGgGaAloD0MI7Q+U2/b4Y0CUhpRSlGgVTegDaBZHQKBCZ5JK8L91fZQoaAZoCWgPQwi3XWiu02paQJSGlFKUaBVN6ANoFkdAoESDu0CzTnV9lChoBmgJaA9DCFT/IJIhKmBAlIaUUpRoFU3oA2gWR0CgVxY0l7dBdX2UKGgGaAloD0MIGRwlr84JIsCUhpRSlGgVS/xoFkdAoFhFqagElnV9lChoBmgJaA9DCAw6IXRQJGNAlIaUUpRoFU3oA2gWR0CgWH5PEbYLdX2UKGgGaAloD0MIQEzChTx8WkCUhpRSlGgVTegDaBZHQKBZmfzSThZ1fZQoaAZoCWgPQwgvMgG/RrIUQJSGlFKUaBVNDAFoFkdAoFmh6a9bo3V9lChoBmgJaA9DCBQF+kSeZChAlIaUUpRoFUvvaBZHQKBgI0hNdqt1fZQoaAZoCWgPQwgm4NdIEnVhQJSGlFKUaBVN6ANoFkdAoGBKDujRD3V9lChoBmgJaA9DCONQvwtbGGZAlIaUUpRoFU3oA2gWR0CgYMZaePJadX2UKGgGaAloD0MIkKLO3MNWZECUhpRSlGgVTegDaBZHQKBoaa7VawF1fZQoaAZoCWgPQwitTWN7LaJfQJSGlFKUaBVN6ANoFkdAoGkiADq4Y3V9lChoBmgJaA9DCISgo1UtdmVAlIaUUpRoFU3oA2gWR0CgadSqMm4RdX2UKGgGaAloD0MIisvxCkQJXECUhpRSlGgVTegDaBZHQKBqhsUIsy11fZQoaAZoCWgPQwgo1xTI7GxfQJSGlFKUaBVN6ANoFkdAoG2pJTVDr3V9lChoBmgJaA9DCM6JPbSPzmRAlIaUUpRoFU3oA2gWR0CgbwJBX0XhdX2UKGgGaAloD0MIlbVN8TjOYECUhpRSlGgVTegDaBZHQKBwbKzRhMJ1fZQoaAZoCWgPQwjGFRdH5U4lQJSGlFKUaBVL3WgWR0CgcsoESuhcdX2UKGgGaAloD0MIpUkp6PYsRkCUhpRSlGgVTegDaBZHQKB0c7NB4Ux1fZQoaAZoCWgPQwhjCWtj7NhdQJSGlFKUaBVN6ANoFkdAoHbxhScbznV9lChoBmgJaA9DCB4X1SKiXDdAlIaUUpRoFU0RAWgWR0Cgd+zVDrqudX2UKGgGaAloD0MIs33IW65mYECUhpRSlGgVTegDaBZHQKB7Tl+Vkc11fZQoaAZoCWgPQwikwW1tYZRkQJSGlFKUaBVN6ANoFkdAoIurpaA4GXV9lChoBmgJaA9DCCocQSrFBGBAlIaUUpRoFU3oA2gWR0CgjUUZFXq8dX2UKGgGaAloD0MIhJz3/3HQW0CUhpRSlGgVTegDaBZHQKCNT1klNUR1fZQoaAZoCWgPQwhlpUkp6AdcQJSGlFKUaBVN6ANoFkdAoJSLQb+98XV9lChoBmgJaA9DCJks7j8y0l1AlIaUUpRoFU3oA2gWR0CglLIRqXWwdX2UKGgGaAloD0MIs7eU88VFYECUhpRSlGgVTegDaBZHQKCVLtIkJKJ1fZQoaAZoCWgPQwgShCug0JphQJSGlFKUaBVN6ANoFkdAoJxM8TzunnV9lChoBmgJaA9DCDArFOl+fWNAlIaUUpRoFU3oA2gWR0CgnPx9PUKBdX2UKGgGaAloD0MIsOYAwZyIY0CUhpRSlGgVTegDaBZHQKCdl7jT8YR1fZQoaAZoCWgPQwj3d7ZHbwJeQJSGlFKUaBVN6ANoFkdAoKLKOWBz3nV9lChoBmgJaA9DCI23lV4bRGFAlIaUUpRoFU3oA2gWR0CgpEBFd9lVdX2UKGgGaAloD0MIfxZLkXzVOcCUhpRSlGgVS/loFkdAoKW9DD0lJHV9lChoBmgJaA9DCFBR9Sude2JAlIaUUpRoFU3oA2gWR0CgprLEk0JodX2UKGgGaAloD0MIrYTukjjPYUCUhpRSlGgVTegDaBZHQKCoVzFuNxV1fZQoaAZoCWgPQwiV9DC0OhZcQJSGlFKUaBVN6ANoFkdAoKrAswtap3V9lChoBmgJaA9DCCyeeqRBYmBAlIaUUpRoFU3oA2gWR0Cgq63JYDDCdX2UKGgGaAloD0MImzxlNd1bYkCUhpRSlGgVTegDaBZHQKCu5Kifxtp1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 124,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
Proximal Policy Optimization/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:216e7b1707f344d7844590f45c5f4989fe2f1a34d8bffb7ffa33cbb20411426e
3
+ size 84829
Proximal Policy Optimization/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d0283c4237f5d770fb2cd6fbb97fcfc667edea0215711754fd859f9709612c1
3
+ size 43201
Proximal Policy Optimization/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
Proximal Policy Optimization/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: ppo-LunarLander-v2
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 203.94 +/- 26.92
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **ppo-LunarLander-v2** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **ppo-LunarLander-v2** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f201e37eb90>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f201e37ec20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f201e37ecb0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f201e37ed40>", "_build": "<function ActorCriticPolicy._build at 0x7f201e37edd0>", "forward": "<function ActorCriticPolicy.forward at 0x7f201e37ee60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f201e37eef0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f201e37ef80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f201e382050>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f201e3820e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f201e382170>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f201e424150>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651689209.9181235, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOgioL7n/Di940m6vEGSiTxsHJY+mDh8vQAAgD8AAIA/TasSvhwjULw+URW9o3MzPRFvZ7yj4GO6AACAPwAAgD8aYpe++i4ovf221LzjkzO7x8OTPmouBjwAAIA/AACAPwAj5jzOyoC8VbsQvcZKIz2TZuS94Hz+PQAAgD8AAIA/DdIOvjqGoz5NeGc9bBaBvvL6UjyyrVE9AAAAAAAAAADa1p69B6jLPtZZdL1rrqe+QyOmPGn2grwAAAAAAAAAAAAHg7yvTbI/1uVzvbb/u7509yE9rQAcPQAAAAAAAAAA5iyovjFXSr3jZoS4hQpkt5W+hj660v43AACAPwAAgD86TXi+D+89vOvzlrsLAXa5DHefPc85szoAAIA/AACAP02YFD5hVrg7XyWCvQBOwbtqV089K/qwvAAAgD8AAIA/jaEAvhQUmjvmr349bK8pvPKQOr38HRo9AACAPwAAgD+ajRQ8UsD4uTKEuDqdTQQ2K1LkOvbH1bkAAIA/AACAP42mtz32gGe64KpwOw1afrbNlAq7BvGKugAAgD8AAIA/M0WzPB8lmbkwvK87/11JOGj5Arwn3wG4AACAPwAAgD9m6ps8XJNOuoJ047oKXSC2vLLzOdAiAToAAIA/AACAP2aIjzxc7wq69TfpO1YJuTfxiHg7kBOdNgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVbhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAAFr1S58Y0CUhpRSlIwBbJRN6AOMAXSUR0CfQYa6STyKdX2UKGgGaAloD0MI7BNAMbKoQ8CUhpRSlGgVS5ZoFkdAn0G+SbH6uXV9lChoBmgJaA9DCFCNl24S32RAlIaUUpRoFU3oA2gWR0CfQixeb/fgdX2UKGgGaAloD0MIxt6LL9q7X0CUhpRSlGgVTegDaBZHQJ9Eyqn3ta91fZQoaAZoCWgPQwg8hPHTuMcgQJSGlFKUaBVL72gWR0CfRcWXC0ngdX2UKGgGaAloD0MIzTy5psBFY0CUhpRSlGgVTegDaBZHQJ9sWYhMajx1fZQoaAZoCWgPQwgO+WcG8UkxQJSGlFKUaBVL42gWR0Cfb096kZaWdX2UKGgGaAloD0MIaccNv5t+NECUhpRSlGgVS+hoFkdAn3BWO6unuXV9lChoBmgJaA9DCKt2TUjr4mFAlIaUUpRoFU3oA2gWR0Cfcb+3H7xedX2UKGgGaAloD0MI6ukj8AekZUCUhpRSlGgVTegDaBZHQJ9yUj6eoUB1fZQoaAZoCWgPQwjLSpNS0PlgQJSGlFKUaBVN6ANoFkdAn3qdOqNp/XV9lChoBmgJaA9DCA3FHW/yFznAlIaUUpRoFUvQaBZHQJ+K/Khcqvx1fZQoaAZoCWgPQwjFWKZfIpFXQJSGlFKUaBVN6ANoFkdAn5BUT101ZXV9lChoBmgJaA9DCKoPJO+cOWtAlIaUUpRoFU15AmgWR0Cfk2EG7jDLdX2UKGgGaAloD0MI9ifxuRMTYUCUhpRSlGgVTegDaBZHQJ+W32nKnvV1fZQoaAZoCWgPQwiuYYbGE1NjQJSGlFKUaBVN6ANoFkdAn5gDin5zo3V9lChoBmgJaA9DCMgKfhtigk5AlIaUUpRoFU3oA2gWR0CfmUGhEjPfdX2UKGgGaAloD0MIuTgqN1EpXECUhpRSlGgVTegDaBZHQJ+gT0Bfa6B1fZQoaAZoCWgPQwjbpnhc1BNiQJSGlFKUaBVN6ANoFkdAn6RYxcmjTXV9lChoBmgJaA9DCEHV6NUAqltAlIaUUpRoFU3oA2gWR0CfrManJkoXdX2UKGgGaAloD0MICDvFqsEjY0CUhpRSlGgVTegDaBZHQJ+tWCPIXCV1fZQoaAZoCWgPQwi5q1eR0QVDQJSGlFKUaBVLsmgWR0CfrrcMEzO5dX2UKGgGaAloD0MICks8oGwDYECUhpRSlGgVTegDaBZHQJ+yTfbblBB1fZQoaAZoCWgPQwhA+5EisupiQJSGlFKUaBVN6ANoFkdAn9mSU9pyqHV9lChoBmgJaA9DCExsPq4N3VtAlIaUUpRoFU3oA2gWR0Cf3Qe8PFvRdX2UKGgGaAloD0MIoz7JHTZzYECUhpRSlGgVTegDaBZHQJ/eL/DLr5Z1fZQoaAZoCWgPQwgkgQabOhlbQJSGlFKUaBVN6ANoFkdAn9+xPfsNUnV9lChoBmgJaA9DCOP9uP3y81lAlIaUUpRoFU3oA2gWR0Cf4FOGj9GadX2UKGgGaAloD0MIqYdodAdmYECUhpRSlGgVTegDaBZHQJ/5kKRdQfp1fZQoaAZoCWgPQwgcBvNXyExXQJSGlFKUaBVN6ANoFkdAn/71X/5tWXV9lChoBmgJaA9DCONve4LEU2JAlIaUUpRoFU3oA2gWR0CgAO/m9xp+dX2UKGgGaAloD0MIHvzEAfTnMsCUhpRSlGgVS3FoFkdAoAGuIRAbAHV9lChoBmgJaA9DCFZ+GYwR72FAlIaUUpRoFU3oA2gWR0CgApETg2qDdX2UKGgGaAloD0MIHsU56ujgVUCUhpRSlGgVTegDaBZHQKADDgJC0F91fZQoaAZoCWgPQwiO6J51jR1dQJSGlFKUaBVN6ANoFkdAoAOZ80DU3HV9lChoBmgJaA9DCK/t7ZbkKCvAlIaUUpRoFUtgaBZHQKAF7JcPe551fZQoaAZoCWgPQwj6RJ4kXZpmQJSGlFKUaBVN6ANoFkdAoAiZlJ6IFnV9lChoBmgJaA9DCE0tW+uLGmBAlIaUUpRoFU3oA2gWR0CgDJJSJj2BdX2UKGgGaAloD0MI0hqDTgiaXkCUhpRSlGgVTegDaBZHQKAM2+gUUPB1fZQoaAZoCWgPQwjLD1zliXpmQJSGlFKUaBVN6ANoFkdAoA2UK7ZnMHV9lChoBmgJaA9DCCJt409Unl1AlIaUUpRoFU3oA2gWR0CgD0pEH+qBdX2UKGgGaAloD0MIsdtnlZmQYUCUhpRSlGgVTegDaBZHQKAi7xEORT11fZQoaAZoCWgPQwhBRkCFI29cQJSGlFKUaBVN6ANoFkdAoCTByCFsYXV9lChoBmgJaA9DCKUTCaaaZmNAlIaUUpRoFU3oA2gWR0CgJVWWIGhVdX2UKGgGaAloD0MIOC7jpgZ6AMCUhpRSlGgVS+ZoFkdAoCWoDRtxdnV9lChoBmgJaA9DCMBZSpaTXF1AlIaUUpRoFU3oA2gWR0CgJhtfXwsodX2UKGgGaAloD0MIjbW/sz2JY0CUhpRSlGgVTegDaBZHQKAmZJq7Acl1fZQoaAZoCWgPQwjIe9XKhN8IwJSGlFKUaBVL22gWR0CgLbQYLsrvdX2UKGgGaAloD0MIz/kpjgPTTECUhpRSlGgVS/JoFkdAoC5Ql8gIQnV9lChoBmgJaA9DCAXAeAYNAT9AlIaUUpRoFUvtaBZHQKAvWMXrMTx1fZQoaAZoCWgPQwj7zFmfckhiQJSGlFKUaBVN6ANoFkdAoDWF14gRsnV9lChoBmgJaA9DCCjzj77JAWFAlIaUUpRoFU3oA2gWR0CgNwrsjVx0dX2UKGgGaAloD0MIFJhO6za6X0CUhpRSlGgVTegDaBZHQKA31b9qDbt1fZQoaAZoCWgPQwiUUPpCyEtCQJSGlFKUaBVL02gWR0CgOJJrk8zRdX2UKGgGaAloD0MIP41785v1YUCUhpRSlGgVTegDaBZHQKA5TghKUV11fZQoaAZoCWgPQwjzyvW2GZ9jQJSGlFKUaBVN6ANoFkdAoDnc1ZTya3V9lChoBmgJaA9DCBssnKT5pGNAlIaUUpRoFU3oA2gWR0CgPDy0a6z3dX2UKGgGaAloD0MInUfF/x0BMkCUhpRSlGgVS89oFkdAoD1sq8UVSHV9lChoBmgJaA9DCIV4JF6ermNAlIaUUpRoFU3oA2gWR0CgPrC2MKkVdX2UKGgGaAloD0MIY7Mj1XdOK8CUhpRSlGgVS9doFkdAoEEukadc0XV9lChoBmgJaA9DCFwf1hu1/1tAlIaUUpRoFU3oA2gWR0CgQimC7K7qdX2UKGgGaAloD0MI7Q+U2/b4Y0CUhpRSlGgVTegDaBZHQKBCZ5JK8L91fZQoaAZoCWgPQwi3XWiu02paQJSGlFKUaBVN6ANoFkdAoESDu0CzTnV9lChoBmgJaA9DCFT/IJIhKmBAlIaUUpRoFU3oA2gWR0CgVxY0l7dBdX2UKGgGaAloD0MIGRwlr84JIsCUhpRSlGgVS/xoFkdAoFhFqagElnV9lChoBmgJaA9DCAw6IXRQJGNAlIaUUpRoFU3oA2gWR0CgWH5PEbYLdX2UKGgGaAloD0MIQEzChTx8WkCUhpRSlGgVTegDaBZHQKBZmfzSThZ1fZQoaAZoCWgPQwgvMgG/RrIUQJSGlFKUaBVNDAFoFkdAoFmh6a9bo3V9lChoBmgJaA9DCBQF+kSeZChAlIaUUpRoFUvvaBZHQKBgI0hNdqt1fZQoaAZoCWgPQwgm4NdIEnVhQJSGlFKUaBVN6ANoFkdAoGBKDujRD3V9lChoBmgJaA9DCONQvwtbGGZAlIaUUpRoFU3oA2gWR0CgYMZaePJadX2UKGgGaAloD0MIkKLO3MNWZECUhpRSlGgVTegDaBZHQKBoaa7VawF1fZQoaAZoCWgPQwitTWN7LaJfQJSGlFKUaBVN6ANoFkdAoGkiADq4Y3V9lChoBmgJaA9DCISgo1UtdmVAlIaUUpRoFU3oA2gWR0CgadSqMm4RdX2UKGgGaAloD0MIisvxCkQJXECUhpRSlGgVTegDaBZHQKBqhsUIsy11fZQoaAZoCWgPQwgo1xTI7GxfQJSGlFKUaBVN6ANoFkdAoG2pJTVDr3V9lChoBmgJaA9DCM6JPbSPzmRAlIaUUpRoFU3oA2gWR0CgbwJBX0XhdX2UKGgGaAloD0MIlbVN8TjOYECUhpRSlGgVTegDaBZHQKBwbKzRhMJ1fZQoaAZoCWgPQwjGFRdH5U4lQJSGlFKUaBVL3WgWR0CgcsoESuhcdX2UKGgGaAloD0MIpUkp6PYsRkCUhpRSlGgVTegDaBZHQKB0c7NB4Ux1fZQoaAZoCWgPQwhjCWtj7NhdQJSGlFKUaBVN6ANoFkdAoHbxhScbznV9lChoBmgJaA9DCB4X1SKiXDdAlIaUUpRoFU0RAWgWR0Cgd+zVDrqudX2UKGgGaAloD0MIs33IW65mYECUhpRSlGgVTegDaBZHQKB7Tl+Vkc11fZQoaAZoCWgPQwikwW1tYZRkQJSGlFKUaBVN6ANoFkdAoIurpaA4GXV9lChoBmgJaA9DCCocQSrFBGBAlIaUUpRoFU3oA2gWR0CgjUUZFXq8dX2UKGgGaAloD0MIhJz3/3HQW0CUhpRSlGgVTegDaBZHQKCNT1klNUR1fZQoaAZoCWgPQwhlpUkp6AdcQJSGlFKUaBVN6ANoFkdAoJSLQb+98XV9lChoBmgJaA9DCJks7j8y0l1AlIaUUpRoFU3oA2gWR0CglLIRqXWwdX2UKGgGaAloD0MIs7eU88VFYECUhpRSlGgVTegDaBZHQKCVLtIkJKJ1fZQoaAZoCWgPQwgShCug0JphQJSGlFKUaBVN6ANoFkdAoJxM8TzunnV9lChoBmgJaA9DCDArFOl+fWNAlIaUUpRoFU3oA2gWR0CgnPx9PUKBdX2UKGgGaAloD0MIsOYAwZyIY0CUhpRSlGgVTegDaBZHQKCdl7jT8YR1fZQoaAZoCWgPQwj3d7ZHbwJeQJSGlFKUaBVN6ANoFkdAoKLKOWBz3nV9lChoBmgJaA9DCI23lV4bRGFAlIaUUpRoFU3oA2gWR0CgpEBFd9lVdX2UKGgGaAloD0MIfxZLkXzVOcCUhpRSlGgVS/loFkdAoKW9DD0lJHV9lChoBmgJaA9DCFBR9Sude2JAlIaUUpRoFU3oA2gWR0CgprLEk0JodX2UKGgGaAloD0MIrYTukjjPYUCUhpRSlGgVTegDaBZHQKCoVzFuNxV1fZQoaAZoCWgPQwiV9DC0OhZcQJSGlFKUaBVN6ANoFkdAoKrAswtap3V9lChoBmgJaA9DCCyeeqRBYmBAlIaUUpRoFU3oA2gWR0Cgq63JYDDCdX2UKGgGaAloD0MImzxlNd1bYkCUhpRSlGgVTegDaBZHQKCu5Kifxtp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:807ce0f37005f1908bc38282e7f0aac820189e12279eae7cf371478862a4e933
3
+ size 252708
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 203.94164354418996, "std_reward": 26.91878563297683, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-04T19:03:47.431721"}