Sachinkelenjaguri
commited on
Commit
·
3ef6882
1
Parent(s):
67194c5
readme.md
Browse files
README.md
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import os
|
3 |
+
import torch
|
4 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
5 |
+
from transformers.optimization import Adafactor
|
6 |
+
import time
|
7 |
+
import warnings
|
8 |
+
warnings.filterwarnings('ignore')
|
9 |
+
|
10 |
+
tokenizer = T5Tokenizer.from_pretrained('Sachinkelenjaguri/sa_T5_Table_to_text')
|
11 |
+
model = T5ForConditionalGeneration.from_pretrained('Sachinkelenjaguri/sa_T5_Table_to_text', return_dict=True)
|
12 |
+
#moving the model to device(GPU/CPU)
|
13 |
+
|
14 |
+
def generate(text):
|
15 |
+
model.eval()
|
16 |
+
input_ids = tokenizer.encode("WebNLG:{} </s>".format(text), return_tensors="pt") # Batch size 1
|
17 |
+
# input_ids.to(dev)
|
18 |
+
s = time.time()
|
19 |
+
outputs = model.generate(input_ids)
|
20 |
+
gen_text=tokenizer.decode(outputs[0]).replace('<pad>','').replace('</s>','')
|
21 |
+
elapsed = time.time() - s
|
22 |
+
print('Generated in {} seconds'.format(str(elapsed)[:4]))
|
23 |
+
|
24 |
+
return gen_text
|
25 |
+
|
26 |
+
|
27 |
+
generate(' Russia | leader | Putin')
|