Update README.md
Browse files
README.md
CHANGED
@@ -21,13 +21,16 @@ digital collections, and supervised pre-training on two datasets
|
|
21 |
with contemporary German text, [conll2003](https://huggingface.co/models?dataset=dataset:conll2003)
|
22 |
and [germeval_14](https://huggingface.co/models?dataset=dataset:germeval_14).
|
23 |
|
|
|
|
|
24 |
# Results
|
25 |
|
26 |
-
In a 5-fold cross validation with different historical German NER corpora
|
27 |
-
|
|
|
28 |
|
29 |
-
|
30 |
-
|
31 |
|
32 |
# Weights
|
33 |
We provide model weights for PyTorch.
|
|
|
21 |
with contemporary German text, [conll2003](https://huggingface.co/models?dataset=dataset:conll2003)
|
22 |
and [germeval_14](https://huggingface.co/models?dataset=dataset:germeval_14).
|
23 |
|
24 |
+
For further details, have a look at [sbb_ner](https://github.com/qurator-spk/sbb_ner) on GitHub.
|
25 |
+
|
26 |
# Results
|
27 |
|
28 |
+
In a 5-fold cross validation with different historical German NER corpora
|
29 |
+
(see our *KONVENS2019* [paper](https://corpora.linguistik.uni-erlangen.de/data/konvens/proceedings/papers/KONVENS2019_paper_4.pdf)),
|
30 |
+
the model obtained an F1-Score of **84.3**±1.1%.
|
31 |
|
32 |
+
In the *CLEF-HIPE-2020* Shared Task ([paper](http://ceur-ws.org/Vol-2696/paper_255.pdf)),
|
33 |
+
the model ranked 2nd of 13 systems for the German coarse NER task.
|
34 |
|
35 |
# Weights
|
36 |
We provide model weights for PyTorch.
|