SBB
/

Token Classification
Transformers
PyTorch
German
bert
sequence-tagger-model
Inference Endpoints
cneud commited on
Commit
8069f07
·
1 Parent(s): cbe839d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -4
README.md CHANGED
@@ -21,13 +21,16 @@ digital collections, and supervised pre-training on two datasets
21
  with contemporary German text, [conll2003](https://huggingface.co/models?dataset=dataset:conll2003)
22
  and [germeval_14](https://huggingface.co/models?dataset=dataset:germeval_14).
23
 
 
 
24
  # Results
25
 
26
- In a 5-fold cross validation with different historical German NER corpora,
27
- the model obtained an F1-Score of **84.3**±1.1%.
 
28
 
29
- For details, see our *KONVENS2019* [paper](https://corpora.linguistik.uni-erlangen.de/data/konvens/proceedings/papers/KONVENS2019_paper_4.pdf)
30
- or have a look at [sbb_ner](https://github.com/qurator-spk/sbb_ner) on GitHub.
31
 
32
  # Weights
33
  We provide model weights for PyTorch.
 
21
  with contemporary German text, [conll2003](https://huggingface.co/models?dataset=dataset:conll2003)
22
  and [germeval_14](https://huggingface.co/models?dataset=dataset:germeval_14).
23
 
24
+ For further details, have a look at [sbb_ner](https://github.com/qurator-spk/sbb_ner) on GitHub.
25
+
26
  # Results
27
 
28
+ In a 5-fold cross validation with different historical German NER corpora
29
+ (see our *KONVENS2019* [paper](https://corpora.linguistik.uni-erlangen.de/data/konvens/proceedings/papers/KONVENS2019_paper_4.pdf)),
30
+ the model obtained an F1-Score of **84.3**±1.1%.
31
 
32
+ In the *CLEF-HIPE-2020* Shared Task ([paper](http://ceur-ws.org/Vol-2696/paper_255.pdf)),
33
+ the model ranked 2nd of 13 systems for the German coarse NER task.
34
 
35
  # Weights
36
  We provide model weights for PyTorch.