--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: model_ckpt results: [] --- # model_ckpt This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0091 - Accuracy: 0.9989 - F1: 0.9989 - Precision: 0.9989 - Recall: 0.9989 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 116 - eval_batch_size: 116 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.3936 | 1.0 | 45 | 0.0168 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0187 | 2.0 | 90 | 0.0047 | 0.9989 | 0.9989 | 0.9989 | 0.9989 | | 0.0049 | 3.0 | 135 | 0.0345 | 0.9945 | 0.9945 | 0.9945 | 0.9945 | | 0.0035 | 4.0 | 180 | 0.0105 | 0.9978 | 0.9978 | 0.9978 | 0.9978 | | 0.0015 | 5.0 | 225 | 0.0075 | 0.9989 | 0.9989 | 0.9989 | 0.9989 | | 0.0009 | 6.0 | 270 | 0.0077 | 0.9989 | 0.9989 | 0.9989 | 0.9989 | | 0.0007 | 7.0 | 315 | 0.0078 | 0.9989 | 0.9989 | 0.9989 | 0.9989 | | 0.0006 | 8.0 | 360 | 0.0079 | 0.9989 | 0.9989 | 0.9989 | 0.9989 | | 0.0005 | 9.0 | 405 | 0.0081 | 0.9989 | 0.9989 | 0.9989 | 0.9989 | | 0.0004 | 10.0 | 450 | 0.0083 | 0.9989 | 0.9989 | 0.9989 | 0.9989 | | 0.0004 | 11.0 | 495 | 0.0085 | 0.9989 | 0.9989 | 0.9989 | 0.9989 | | 0.0003 | 12.0 | 540 | 0.0086 | 0.9989 | 0.9989 | 0.9989 | 0.9989 | | 0.0003 | 13.0 | 585 | 0.0087 | 0.9989 | 0.9989 | 0.9989 | 0.9989 | | 0.0003 | 14.0 | 630 | 0.0088 | 0.9989 | 0.9989 | 0.9989 | 0.9989 | | 0.0003 | 15.0 | 675 | 0.0089 | 0.9989 | 0.9989 | 0.9989 | 0.9989 | | 0.0003 | 16.0 | 720 | 0.0090 | 0.9989 | 0.9989 | 0.9989 | 0.9989 | | 0.0002 | 17.0 | 765 | 0.0090 | 0.9989 | 0.9989 | 0.9989 | 0.9989 | | 0.0002 | 18.0 | 810 | 0.0090 | 0.9989 | 0.9989 | 0.9989 | 0.9989 | | 0.0002 | 19.0 | 855 | 0.0091 | 0.9989 | 0.9989 | 0.9989 | 0.9989 | | 0.0002 | 20.0 | 900 | 0.0091 | 0.9989 | 0.9989 | 0.9989 | 0.9989 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1