File size: 18,554 Bytes
b66a577 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
falcon-mamba-7b-instruct - GGUF
- Model creator: https://huggingface.co/tiiuae/
- Original model: https://huggingface.co/tiiuae/falcon-mamba-7b-instruct/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [falcon-mamba-7b-instruct.Q2_K.gguf](https://huggingface.co/RichardErkhov/tiiuae_-_falcon-mamba-7b-instruct-gguf/blob/main/falcon-mamba-7b-instruct.Q2_K.gguf) | Q2_K | 2.39GB |
| [falcon-mamba-7b-instruct.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/tiiuae_-_falcon-mamba-7b-instruct-gguf/blob/main/falcon-mamba-7b-instruct.IQ3_XS.gguf) | IQ3_XS | 3.05GB |
| [falcon-mamba-7b-instruct.IQ3_S.gguf](https://huggingface.co/RichardErkhov/tiiuae_-_falcon-mamba-7b-instruct-gguf/blob/main/falcon-mamba-7b-instruct.IQ3_S.gguf) | IQ3_S | 3.05GB |
| [falcon-mamba-7b-instruct.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/tiiuae_-_falcon-mamba-7b-instruct-gguf/blob/main/falcon-mamba-7b-instruct.Q3_K_S.gguf) | Q3_K_S | 3.05GB |
| [falcon-mamba-7b-instruct.IQ3_M.gguf](https://huggingface.co/RichardErkhov/tiiuae_-_falcon-mamba-7b-instruct-gguf/blob/main/falcon-mamba-7b-instruct.IQ3_M.gguf) | IQ3_M | 3.05GB |
| [falcon-mamba-7b-instruct.Q3_K.gguf](https://huggingface.co/RichardErkhov/tiiuae_-_falcon-mamba-7b-instruct-gguf/blob/main/falcon-mamba-7b-instruct.Q3_K.gguf) | Q3_K | 3.05GB |
| [falcon-mamba-7b-instruct.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/tiiuae_-_falcon-mamba-7b-instruct-gguf/blob/main/falcon-mamba-7b-instruct.Q3_K_M.gguf) | Q3_K_M | 3.05GB |
| [falcon-mamba-7b-instruct.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/tiiuae_-_falcon-mamba-7b-instruct-gguf/blob/main/falcon-mamba-7b-instruct.Q3_K_L.gguf) | Q3_K_L | 3.05GB |
| [falcon-mamba-7b-instruct.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/tiiuae_-_falcon-mamba-7b-instruct-gguf/blob/main/falcon-mamba-7b-instruct.IQ4_XS.gguf) | IQ4_XS | 3.71GB |
| [falcon-mamba-7b-instruct.Q4_0.gguf](https://huggingface.co/RichardErkhov/tiiuae_-_falcon-mamba-7b-instruct-gguf/blob/main/falcon-mamba-7b-instruct.Q4_0.gguf) | Q4_0 | 3.92GB |
| [falcon-mamba-7b-instruct.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/tiiuae_-_falcon-mamba-7b-instruct-gguf/blob/main/falcon-mamba-7b-instruct.IQ4_NL.gguf) | IQ4_NL | 3.92GB |
| [falcon-mamba-7b-instruct.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/tiiuae_-_falcon-mamba-7b-instruct-gguf/blob/main/falcon-mamba-7b-instruct.Q4_K_S.gguf) | Q4_K_S | 3.92GB |
| [falcon-mamba-7b-instruct.Q4_K.gguf](https://huggingface.co/RichardErkhov/tiiuae_-_falcon-mamba-7b-instruct-gguf/blob/main/falcon-mamba-7b-instruct.Q4_K.gguf) | Q4_K | 3.92GB |
| [falcon-mamba-7b-instruct.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/tiiuae_-_falcon-mamba-7b-instruct-gguf/blob/main/falcon-mamba-7b-instruct.Q4_K_M.gguf) | Q4_K_M | 3.92GB |
| [falcon-mamba-7b-instruct.Q4_1.gguf](https://huggingface.co/RichardErkhov/tiiuae_-_falcon-mamba-7b-instruct-gguf/blob/main/falcon-mamba-7b-instruct.Q4_1.gguf) | Q4_1 | 4.32GB |
| [falcon-mamba-7b-instruct.Q5_0.gguf](https://huggingface.co/RichardErkhov/tiiuae_-_falcon-mamba-7b-instruct-gguf/blob/main/falcon-mamba-7b-instruct.Q5_0.gguf) | Q5_0 | 4.73GB |
| [falcon-mamba-7b-instruct.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/tiiuae_-_falcon-mamba-7b-instruct-gguf/blob/main/falcon-mamba-7b-instruct.Q5_K_S.gguf) | Q5_K_S | 4.73GB |
| [falcon-mamba-7b-instruct.Q5_K.gguf](https://huggingface.co/RichardErkhov/tiiuae_-_falcon-mamba-7b-instruct-gguf/blob/main/falcon-mamba-7b-instruct.Q5_K.gguf) | Q5_K | 4.73GB |
| [falcon-mamba-7b-instruct.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/tiiuae_-_falcon-mamba-7b-instruct-gguf/blob/main/falcon-mamba-7b-instruct.Q5_K_M.gguf) | Q5_K_M | 4.73GB |
| [falcon-mamba-7b-instruct.Q5_1.gguf](https://huggingface.co/RichardErkhov/tiiuae_-_falcon-mamba-7b-instruct-gguf/blob/main/falcon-mamba-7b-instruct.Q5_1.gguf) | Q5_1 | 5.14GB |
| [falcon-mamba-7b-instruct.Q6_K.gguf](https://huggingface.co/RichardErkhov/tiiuae_-_falcon-mamba-7b-instruct-gguf/blob/main/falcon-mamba-7b-instruct.Q6_K.gguf) | Q6_K | 5.59GB |
| [falcon-mamba-7b-instruct.Q8_0.gguf](https://huggingface.co/RichardErkhov/tiiuae_-_falcon-mamba-7b-instruct-gguf/blob/main/falcon-mamba-7b-instruct.Q8_0.gguf) | Q8_0 | 7.23GB |
Original model description:
---
datasets:
- tiiuae/falcon-refinedweb
- HuggingFaceFW/fineweb-edu
language:
- en
license: other
license_name: falcon-mamba-7b-license
license_link: https://falconllm.tii.ae/falcon-mamba-7b-terms-and-conditions.html
base_model: tiiuae/falcon-mamba-7b
---
<img src="https://huggingface.co/datasets/tiiuae/documentation-images/resolve/main/falcon_mamba/thumbnail.png" alt="drawing" width="800"/>
**Model card for FalconMamba Instruct model**
# Table of Contents
0. [TL;DR](#TL;DR)
1. [Model Details](#model-details)
2. [Usage](#usage)
3. [Training Details](#training-details)
4. [Evaluation](#evaluation)
# TL;DR
# Model Details
## Model Description
- **Developed by:** [https://www.tii.ae](https://www.tii.ae)
- **Model type:** Causal decoder-only
- **Architecture:** Mamba
- **Language(s) (NLP):** Mainly English
- **License:** TII Falcon-Mamba License 2.0
<br>
# Usage
Find below some example scripts on how to use the model in `transformers` (Make sure to have the latest transformers, or the one built from source):
## Using the Pytorch model
### Running the model on a CPU
<details>
<summary> Click to expand </summary>
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-mamba-7b-instruct")
model = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-mamba-7b-instruct")
# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
messages = [
{"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
]
input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
outputs = model.generate(input_ids, max_new_tokens=30)
print(tokenizer.decode(outputs[0]))
```
</details>
### Running the model on a GPU
<details>
<summary> Click to expand </summary>
```python
# pip install accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-mamba-7b-instruct")
model = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-mamba-7b-instruct", device_map="auto")
# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
messages = [
{"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
]
input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
outputs = model.generate(input_ids, max_new_tokens=30)
print(tokenizer.decode(outputs[0]))
```
</details>
### Running the model on a GPU using `torch.compile`
<details>
<summary> Click to expand </summary>
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-mamba-7b-instruct")
model = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-mamba-7b-instruct", torch_dtype=torch.bfloat16).to(0)
model = torch.compile(model)
# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
messages = [
{"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
]
input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
outputs = model.generate(input_ids, max_new_tokens=30)
print(tokenizer.decode(outputs[0]))
```
</details>
### Running the model on a GPU using different precisions
#### FP16
<details>
<summary> Click to expand </summary>
```python
# pip install accelerate
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-mamba-7b-instruct")
model = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-mamba-7b-instruct", device_map="auto", torch_dtype=torch.float16)
# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
messages = [
{"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
]
input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
outputs = model.generate(input_ids, max_new_tokens=30)
print(tokenizer.decode(outputs[0]))
```
</details>
#### 4-bit
<details>
<summary> Click to expand </summary>
```python
# pip install bitsandbytes accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-mamba-7b-instruct")
model = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-mamba-7b-instruct", device_map="auto", quantization_config=BitsAndBytesConfig(load_in_4bit=True))
# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
messages = [
{"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
]
input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
outputs = model.generate(input_ids, max_new_tokens=30)
print(tokenizer.decode(outputs[0]))
```
</details>
<br>
# Training Details
## Training Data
Falcon-Mamba has been trained with ~ 5,500 GT mainly coming from [Refined-Web](https://huggingface.co/datasets/tiiuae/falcon-refinedweb), a large volume web-only dataset filtered and deduplicated.
Similar to the others [Falcon](https://huggingface.co/tiiuae/falcon-11B) suite models, Falcon-Mamba has been trained leveraging a multi-stage training strategy to increase the context-length from 2,048 to 8,192.
Moreover, inspired by the concept of Curriculum Learning, we carefully selected data mixtures throughout the training stages, considering both data diversity and complexity.
Note that at inference the context-length is not relevant as the Mamba architecture has no limit on long range dependency.
At the last training stage, small portion of high-quality curated data was used to further enhance performance.
Overall, the data sources included RefinedWeb-English, high quality technical data, code data and math data extracted from public sources.
In particular, we used samples coming from [Fineweb-edu](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu) during our last training stage.
The data was tokenized with the Falcon-[7B](https://huggingface.co/tiiuae/falcon-7B)/[11B](https://huggingface.co/tiiuae/falcon-11B) tokenizer.
After pre-training, the model has been further fine-tuned on instruction data.
## Training Procedure
Falcon-Mamba-7B was trained on 256 H100 80GB GPUs for the majority of the training, using a 3D parallelism strategy (TP=1, PP=1, DP=256) combined with ZeRO.
### Training Hyperparameters
| **Hyperparameter** | **Value** | **Comment** |
|--------------------|------------|-------------------------------------------|
| Precision | `bfloat16` | |
| Optimizer | AdamW | |
| Max learning rate | 6.4e-4 | Following a WSD (warmup-stable-decay) learning rate schedule |
| Weight decay | 1e-1 | |
| Batch size | 2048 | |
The model was trained AdamW optimizer, WSD (warmup-stable-decay) learning rate schedule, and a batch size rampup from \\(b_{\mathrm{min}}=128\\) to \\(b_{\mathrm{max}}=2048\\) during first 50 GT of training.
In the stable phase we used maximal learning rate \\(\eta_{\mathrm{max}}=6.4 \times 10^{-4}\\), and decayed it to the minimal value \\(\eta_{\mathrm{min}}=\frac{\eta_{\mathrm{max}}}{256}\\) with exponential schedule over 500 GT.
Also, we applied *BatchScaling* during the rampup — rescaling learning rate \\(\eta\\) so that the Adam noise temperature \\(T_{\mathrm{noise}}\equiv\frac{\eta}{\sqrt{b}}\\) is kept constant.
### Speeds, Sizes, Times
The model training took roughly two months.
<br>
# Evaluation
## Benchmarks
We evaluate our model on all benchmarks of the new leaderboard's version using the `lm-evaluation-harness` package, and then normalize the evaluation results with HuggingFace score normalization.
| `model name` |`IFEval`| `BBH` |`MATH LvL5`| `GPQA`| `MUSR`|`MMLU-PRO`|`Average`|
|:--------------------------|:------:|:-----:|:---------:|:-----:|:-----:|:--------:|:-------:|
| ***Pure SSM models*** | | | | | | | |
| `FalconMamba-7B` | 33.36 | 19.88 | 3.63 |8.05 |10.86 | 14.47 |**15.04**|
| `TRI-ML/mamba-7b-rw`<sup>*</sup>| 22.46 | 6.71 | 0.45 | 1.12 | 5.51 | 1.69 | 6.25 |
|***Hybrid SSM-attention models*** | | | | | | |
|`recurrentgemma-9b` | 30.76 | 14.80 | 4.83 | 4.70 | 6.60 | 17.88 | 13.20 |
| `Zyphra/Zamba-7B-v1`<sup>*</sup> | 24.06 | 21.12 | 3.32 | 3.03 | 7.74 | 16.02 | 12.55 |
|***Transformer models*** | | | | | | | |
| `Falcon2-11B` | 32.61 | 21.94 | 2.34 | 2.80 | 7.53 | 15.44 | 13.78 |
| `Meta-Llama-3-8B` | 14.55 | 24.50 | 3.25 | 7.38 | 6.24 | 24.55 | 13.41 |
| `Meta-Llama-3.1-8B` | 12.70 | 25.29 | 4.61 | 6.15 | 8.98 | 24.95 | 13.78 |
| `Mistral-7B-v0.1` | 23.86 | 22.02 | 2.49 | 5.59 | 10.68 | 22.36 | 14.50 |
| `Mistral-Nemo-Base-2407 (12B)` | 16.83 | 29.37 | 4.98 | 5.82 | 6.52 | 27.46 | 15.08 |
| `gemma-7B` | 26.59 | 21.12 | 6.42 | 4.92 | 10.98 | 21.64 |**15.28**|
Also, we evaluate our model on the benchmarks of the first leaderboard using `lighteval`.
| `model name` |`ARC`|`HellaSwag` |`MMLU` |`Winogrande`|`TruthfulQA`|`GSM8K`|`Average` |
|:-----------------------------|:------:|:---------:|:-----:|:----------:|:----------:|:-----:|:----------------:|
| ***Pure SSM models*** | | | | | | | |
| `FalconMamba-7B`<sup>*</sup> | 62.03 | 80.82 | 62.11 | 73.64 | 53.42 | 52.54 | **64.09** |
| `TRI-ML/mamba-7b-rw`<sup>*</sup> | 51.25 | 80.85 | 33.41 | 71.11 | 32.08 | 4.70 | 45.52 |
|***Hybrid SSM-attention models***| | | | | | | |
| `recurrentgemma-9b`<sup>**</sup> |52.00 | 80.40 | 60.50 | 73.60 | 38.60 | 42.60 | 57.95 |
| `Zyphra/Zamba-7B-v1`<sup>*</sup> | 56.14 | 82.23 | 58.11 | 79.87 | 52.88 | 30.78 | 60.00 |
|***Transformer models*** | | | | | | | |
| `Falcon2-11B` | 59.73 | 82.91 | 58.37 | 78.30 | 52.56 | 53.83 | **64.28** |
| `Meta-Llama-3-8B` | 60.24 | 82.23 | 66.70 | 78.45 | 42.93 | 45.19 | 62.62 |
| `Meta-Llama-3.1-8B` | 58.53 | 82.13 | 66.43 | 74.35 | 44.29 | 47.92 | 62.28 |
| `Mistral-7B-v0.1` | 59.98 | 83.31 | 64.16 | 78.37 | 42.15 | 37.83 | 60.97 |
| `gemma-7B` | 61.09 | 82.20 | 64.56 | 79.01 | 44.79 | 50.87 | 63.75 |
Mostly, we took evaluation results from both leaderboards. For the models marked by *star* we evaluated the tasks internally, while for the models marked by two *stars* the results were taken from paper or model card.
## Throughput
This model can achieve comparable throughput and performance compared to other transformer based models that use optimized kernels such as Flash Attention 2. Make sure to install the optimized Mamba kernels with the following commands:
```bash
pip install "causal-conv1d>=1.4.0" mamba-ssm
```
Refer to our [FalconMamba blogpost](https://huggingface.co/blog/falconmamba) for more details about performance evaluation.
<br>
# Technical Specifications
## Model Architecture and Objective
Falcon-Mamba-7B is a causal decoder-only model trained on a causal language modeling task (i.e., predict the next token).
The model is based on the Mamba architecture ([Gu et al., 2023](https://arxiv.org/abs/2312.00752)).
| **Hyperparameter** | **Value** | **Comment** |
|--------------------|-----------|----------------------------------------|
| Layers | 64 | Number of layers |
| `d_model` | 4096 | Hidden dimension |
| `d_state` | 16 | The SSM state dimension |
| Vocabulary | 65024 | Vocabulary Size |
| Sequence length | 8192 | During the last training stages |
## Compute Infrastructure
### Hardware
Falcon-Mamba-7B was trained on AWS SageMaker, using on average 256 H100 80GB GPUs in 32 p5 instances.
### Software
Falcon-Mamba-7B was trained on an internal distributed training codebase, Gigatron. It uses a 3D parallelism approach combined with ZeRO, high-performance Triton kernels.
<br>
# Citation
*Paper coming soon* 😊. In the meanwhile, you can use the following information to cite:
```
@article{falconmamba,
title={Falcon Mamba: The First Competitive Attention-free 7B Language Model},
author={Zuo, Jingwei and Velikanov, Maksim and Rhaiem, Dhia Eddine and Chahed, Ilyas and Belkada, Younes and Kunsch, Guillaume and Hacid, Hakim},
year={2024}
}
```
|