RichardErkhov
commited on
uploaded readme
Browse files
README.md
ADDED
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Quantization made by Richard Erkhov.
|
2 |
+
|
3 |
+
[Github](https://github.com/RichardErkhov)
|
4 |
+
|
5 |
+
[Discord](https://discord.gg/pvy7H8DZMG)
|
6 |
+
|
7 |
+
[Request more models](https://github.com/RichardErkhov/quant_request)
|
8 |
+
|
9 |
+
|
10 |
+
Sailor-1.8B - bnb 8bits
|
11 |
+
- Model creator: https://huggingface.co/sail/
|
12 |
+
- Original model: https://huggingface.co/sail/Sailor-1.8B/
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
Original model description:
|
18 |
+
---
|
19 |
+
language:
|
20 |
+
- en
|
21 |
+
- zh
|
22 |
+
- id
|
23 |
+
- th
|
24 |
+
- vi
|
25 |
+
- ms
|
26 |
+
- lo
|
27 |
+
datasets:
|
28 |
+
- cerebras/SlimPajama-627B
|
29 |
+
- Skywork/SkyPile-150B
|
30 |
+
- allenai/MADLAD-400
|
31 |
+
- cc100
|
32 |
+
tags:
|
33 |
+
- multilingual
|
34 |
+
- sea
|
35 |
+
- sailor
|
36 |
+
license: apache-2.0
|
37 |
+
base_model: Qwen/Qwen1.5-1.8B
|
38 |
+
inference: false
|
39 |
+
model-index:
|
40 |
+
- name: Sailor-1.8B
|
41 |
+
results:
|
42 |
+
- task:
|
43 |
+
type: text-generation
|
44 |
+
dataset:
|
45 |
+
name: XQuAD-Thai
|
46 |
+
type: XQuAD-Thai
|
47 |
+
metrics:
|
48 |
+
- name: EM (3-Shot)
|
49 |
+
type: EM (3-Shot)
|
50 |
+
value: 32.72
|
51 |
+
- name: F1 (3-Shot)
|
52 |
+
type: F1 (3-Shot)
|
53 |
+
value: 48.66
|
54 |
+
- task:
|
55 |
+
type: text-generation
|
56 |
+
dataset:
|
57 |
+
name: TyDiQA-Indonesian
|
58 |
+
type: TyDiQA-Indonesian
|
59 |
+
metrics:
|
60 |
+
- name: EM (3-Shot)
|
61 |
+
type: EM (3-Shot)
|
62 |
+
value: 40.88
|
63 |
+
- name: F1 (3-Shot)
|
64 |
+
type: F1 (3-Shot)
|
65 |
+
value: 65.37
|
66 |
+
- task:
|
67 |
+
type: text-generation
|
68 |
+
dataset:
|
69 |
+
name: XQuAD-Vietnamese
|
70 |
+
type: XQuAD-Vietnamese
|
71 |
+
metrics:
|
72 |
+
- name: EM (3-Shot)
|
73 |
+
type: EM (3-Shot)
|
74 |
+
value: 34.22
|
75 |
+
- name: F1 (3-Shot)
|
76 |
+
type: F1 (3-Shot)
|
77 |
+
value: 53.35
|
78 |
+
- task:
|
79 |
+
type: text-generation
|
80 |
+
dataset:
|
81 |
+
name: XCOPA-Thai
|
82 |
+
type: XCOPA-Thai
|
83 |
+
metrics:
|
84 |
+
- name: EM (3-Shot)
|
85 |
+
type: EM (3-Shot)
|
86 |
+
value: 53.8
|
87 |
+
- task:
|
88 |
+
type: text-generation
|
89 |
+
dataset:
|
90 |
+
name: XCOPA-Indonesian
|
91 |
+
type: XCOPA-Indonesian
|
92 |
+
metrics:
|
93 |
+
- name: EM (3-Shot)
|
94 |
+
type: EM (3-Shot)
|
95 |
+
value: 64.20
|
96 |
+
- task:
|
97 |
+
type: text-generation
|
98 |
+
dataset:
|
99 |
+
name: XCOPA-Vietnamese
|
100 |
+
type: XCOPA-Vietnamese
|
101 |
+
metrics:
|
102 |
+
- name: EM (3-Shot)
|
103 |
+
type: EM (3-Shot)
|
104 |
+
value: 63.20
|
105 |
+
- task:
|
106 |
+
type: text-generation
|
107 |
+
dataset:
|
108 |
+
name: M3Exam-Thai
|
109 |
+
type: M3Exam-Thai
|
110 |
+
metrics:
|
111 |
+
- name: EM (3-Shot)
|
112 |
+
type: EM (3-Shot)
|
113 |
+
value: 25.38
|
114 |
+
- task:
|
115 |
+
type: text-generation
|
116 |
+
dataset:
|
117 |
+
name: M3Exam-Indonesian
|
118 |
+
type: M3Exam-Indonesian
|
119 |
+
metrics:
|
120 |
+
- name: EM (3-Shot)
|
121 |
+
type: EM (3-Shot)
|
122 |
+
value: 28.30
|
123 |
+
- task:
|
124 |
+
type: text-generation
|
125 |
+
dataset:
|
126 |
+
name: M3Exam-Vietnamese
|
127 |
+
type: M3Exam-Vietnamese
|
128 |
+
metrics:
|
129 |
+
- name: EM (3-Shot)
|
130 |
+
type: EM (3-Shot)
|
131 |
+
value: 34.71
|
132 |
+
- task:
|
133 |
+
type: text-generation
|
134 |
+
dataset:
|
135 |
+
name: BELEBELE-Thai
|
136 |
+
type: BELEBELE-Thai
|
137 |
+
metrics:
|
138 |
+
- name: EM (3-Shot)
|
139 |
+
type: EM (3-Shot)
|
140 |
+
value: 34.22
|
141 |
+
- task:
|
142 |
+
type: text-generation
|
143 |
+
dataset:
|
144 |
+
name: BELEBELE-Indonesian
|
145 |
+
type: BELEBELE-Indonesian
|
146 |
+
metrics:
|
147 |
+
- name: EM (3-Shot)
|
148 |
+
type: EM (3-Shot)
|
149 |
+
value: 34.89
|
150 |
+
- task:
|
151 |
+
type: text-generation
|
152 |
+
dataset:
|
153 |
+
name: BELEBELE-Vietnamese
|
154 |
+
type: BELEBELE-Vietnamese
|
155 |
+
metrics:
|
156 |
+
- name: EM (3-Shot)
|
157 |
+
type: EM (3-Shot)
|
158 |
+
value: 35.33
|
159 |
+
---
|
160 |
+
|
161 |
+
<div align="center">
|
162 |
+
<img src="banner_sailor.jpg" width="700"/>
|
163 |
+
</div>
|
164 |
+
|
165 |
+
Sailor is a suite of Open Language Models tailored for South-East Asia (SEA), focusing on languages such as 🇮🇩Indonesian, 🇹🇭Thai, 🇻🇳Vietnamese, 🇲🇾Malay, and 🇱🇦Lao.
|
166 |
+
Developed with careful data curation, Sailor models are designed to understand and generate text across diverse linguistic landscapes of SEA region.
|
167 |
+
Built from [Qwen 1.5](https://huggingface.co/collections/Qwen/qwen15-65c0a2f577b1ecb76d786524) , Sailor encompasses models of varying sizes, spanning from 0.5B to 7B versions for different requirements.
|
168 |
+
We further fine-tune the base model with open-source datasets to get instruction-tuned models, namedly Sailor-Chat.
|
169 |
+
Benchmarking results demonstrate Sailor's proficiency in tasks such as question answering, commonsense reasoning, and other tasks in SEA languages.
|
170 |
+
|
171 |
+
> The logo was generated by MidJourney
|
172 |
+
|
173 |
+
## Model Summary
|
174 |
+
- **Model Collections:** [Base Model & Chat Model](https://huggingface.co/collections/sail/sailor-65e19a749f978976f1959825)
|
175 |
+
- **Project Website:** [sailorllm.github.io](https://sailorllm.github.io/)
|
176 |
+
- **Codebase:** [github.com/sail-sg/sailor-llm](https://github.com/sail-sg/sailor-llm)
|
177 |
+
- **Technical Report:** [arxiv.org/pdf/2404.03608.pdf](https://arxiv.org/pdf/2404.03608.pdf)
|
178 |
+
|
179 |
+
|
180 |
+
## Training details
|
181 |
+
Sailor is crafted by continually pre-training from language models like the remarkable Qwen 1.5 models, which already has a great performance on SEA languages.
|
182 |
+
The pre-training corpus heavily leverages the publicly available corpus, including
|
183 |
+
[SlimPajama](https://huggingface.co/datasets/cerebras/SlimPajama-627B),
|
184 |
+
[SkyPile](https://huggingface.co/datasets/Skywork/SkyPile-150B),
|
185 |
+
[CC100](https://huggingface.co/datasets/cc100) and [MADLAD-400](https://huggingface.co/datasets/allenai/MADLAD-400).
|
186 |
+
|
187 |
+
By employing aggressive data deduplication and careful data cleaning on the collected corpus, we have attained a high-quality dataset spanning various languages.
|
188 |
+
Through systematic experiments to determine the weights of different languages, Sailor models undergo training from 200B to 400B tokens, tailored to different model sizes.
|
189 |
+
The approach boosts their performance on SEA languages while maintaining proficiency in English and Chinese without significant compromise.
|
190 |
+
Finally, we continually pre-train the Qwen1.5-0.5B model with 400 Billion tokens, and other models with 200 Billion tokens to obtain the Sailor models.
|
191 |
+
|
192 |
+
## Requirements
|
193 |
+
The code of Sailor has been in the latest Hugging face transformers and we advise you to install `transformers>=4.37.0`.
|
194 |
+
|
195 |
+
## Quickstart
|
196 |
+
|
197 |
+
Here provides a code snippet to show you how to load the tokenizer and model and how to generate contents.
|
198 |
+
|
199 |
+
```python
|
200 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
201 |
+
device = "cuda" # the device to load the model
|
202 |
+
|
203 |
+
model = AutoModelForCausalLM.from_pretrained("sail/Sailor-1.8B", device_map="auto")
|
204 |
+
tokenizer = AutoTokenizer.from_pretrained("sail/Sailor-1.8B")
|
205 |
+
|
206 |
+
input_message = "Model bahasa adalah model probabilistik"
|
207 |
+
### The given Indonesian input translates to 'A language model is a probabilistic model of.'
|
208 |
+
|
209 |
+
model_inputs = tokenizer([input_message], return_tensors="pt").to(device)
|
210 |
+
|
211 |
+
generated_ids = model.generate(
|
212 |
+
model_inputs.input_ids,
|
213 |
+
max_new_tokens=64
|
214 |
+
)
|
215 |
+
|
216 |
+
generated_ids = [
|
217 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
218 |
+
]
|
219 |
+
|
220 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
221 |
+
print(response)
|
222 |
+
```
|
223 |
+
|
224 |
+
# License
|
225 |
+
|
226 |
+
Sailor is distributed under the terms of the Apache License 2.0.
|
227 |
+
No restrict on the research and the commercial use, but should comply with the [Qwen License](https://huggingface.co/Qwen/Qwen1.5-1.8B/blob/main/LICENSE).
|
228 |
+
|
229 |
+
## Citation
|
230 |
+
|
231 |
+
If you find sailor useful, please cite our work as follows:
|
232 |
+
|
233 |
+
```
|
234 |
+
@misc{dou2024sailor,
|
235 |
+
title={Sailor: Open Language Models for South-East Asia},
|
236 |
+
author={Longxu Dou and Qian Liu and Guangtao Zeng and Jia Guo and Jiahui Zhou and Wei Lu and Min Lin},
|
237 |
+
year={2024},
|
238 |
+
eprint={2404.03608},
|
239 |
+
archivePrefix={arXiv},
|
240 |
+
primaryClass={cs.CL}
|
241 |
+
}
|
242 |
+
```
|
243 |
+
|
244 |
+
# Contact Us
|
245 |
+
|
246 |
+
If you have any questions, please raise an issue or contact us at [[email protected]](mailto:[email protected]) or [[email protected]](mailto:[email protected]).
|
247 |
+
|