RichardErkhov commited on
Commit
634b664
·
verified ·
1 Parent(s): def92aa

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +190 -0
README.md ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ Sailor-0.5B-Chat - GGUF
11
+ - Model creator: https://huggingface.co/sail/
12
+ - Original model: https://huggingface.co/sail/Sailor-0.5B-Chat/
13
+
14
+
15
+ | Name | Quant method | Size |
16
+ | ---- | ---- | ---- |
17
+ | [Sailor-0.5B-Chat.Q2_K.gguf](https://huggingface.co/RichardErkhov/sail_-_Sailor-0.5B-Chat-gguf/blob/main/Sailor-0.5B-Chat.Q2_K.gguf) | Q2_K | 0.28GB |
18
+ | [Sailor-0.5B-Chat.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/sail_-_Sailor-0.5B-Chat-gguf/blob/main/Sailor-0.5B-Chat.IQ3_XS.gguf) | IQ3_XS | 0.3GB |
19
+ | [Sailor-0.5B-Chat.IQ3_S.gguf](https://huggingface.co/RichardErkhov/sail_-_Sailor-0.5B-Chat-gguf/blob/main/Sailor-0.5B-Chat.IQ3_S.gguf) | IQ3_S | 0.31GB |
20
+ | [Sailor-0.5B-Chat.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/sail_-_Sailor-0.5B-Chat-gguf/blob/main/Sailor-0.5B-Chat.Q3_K_S.gguf) | Q3_K_S | 0.31GB |
21
+ | [Sailor-0.5B-Chat.IQ3_M.gguf](https://huggingface.co/RichardErkhov/sail_-_Sailor-0.5B-Chat-gguf/blob/main/Sailor-0.5B-Chat.IQ3_M.gguf) | IQ3_M | 0.32GB |
22
+ | [Sailor-0.5B-Chat.Q3_K.gguf](https://huggingface.co/RichardErkhov/sail_-_Sailor-0.5B-Chat-gguf/blob/main/Sailor-0.5B-Chat.Q3_K.gguf) | Q3_K | 0.33GB |
23
+ | [Sailor-0.5B-Chat.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/sail_-_Sailor-0.5B-Chat-gguf/blob/main/Sailor-0.5B-Chat.Q3_K_M.gguf) | Q3_K_M | 0.33GB |
24
+ | [Sailor-0.5B-Chat.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/sail_-_Sailor-0.5B-Chat-gguf/blob/main/Sailor-0.5B-Chat.Q3_K_L.gguf) | Q3_K_L | 0.34GB |
25
+ | [Sailor-0.5B-Chat.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/sail_-_Sailor-0.5B-Chat-gguf/blob/main/Sailor-0.5B-Chat.IQ4_XS.gguf) | IQ4_XS | 0.36GB |
26
+ | [Sailor-0.5B-Chat.Q4_0.gguf](https://huggingface.co/RichardErkhov/sail_-_Sailor-0.5B-Chat-gguf/blob/main/Sailor-0.5B-Chat.Q4_0.gguf) | Q4_0 | 0.37GB |
27
+ | [Sailor-0.5B-Chat.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/sail_-_Sailor-0.5B-Chat-gguf/blob/main/Sailor-0.5B-Chat.IQ4_NL.gguf) | IQ4_NL | 0.37GB |
28
+ | [Sailor-0.5B-Chat.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/sail_-_Sailor-0.5B-Chat-gguf/blob/main/Sailor-0.5B-Chat.Q4_K_S.gguf) | Q4_K_S | 0.37GB |
29
+ | [Sailor-0.5B-Chat.Q4_K.gguf](https://huggingface.co/RichardErkhov/sail_-_Sailor-0.5B-Chat-gguf/blob/main/Sailor-0.5B-Chat.Q4_K.gguf) | Q4_K | 0.38GB |
30
+ | [Sailor-0.5B-Chat.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/sail_-_Sailor-0.5B-Chat-gguf/blob/main/Sailor-0.5B-Chat.Q4_K_M.gguf) | Q4_K_M | 0.38GB |
31
+ | [Sailor-0.5B-Chat.Q4_1.gguf](https://huggingface.co/RichardErkhov/sail_-_Sailor-0.5B-Chat-gguf/blob/main/Sailor-0.5B-Chat.Q4_1.gguf) | Q4_1 | 0.39GB |
32
+ | [Sailor-0.5B-Chat.Q5_0.gguf](https://huggingface.co/RichardErkhov/sail_-_Sailor-0.5B-Chat-gguf/blob/main/Sailor-0.5B-Chat.Q5_0.gguf) | Q5_0 | 0.42GB |
33
+ | [Sailor-0.5B-Chat.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/sail_-_Sailor-0.5B-Chat-gguf/blob/main/Sailor-0.5B-Chat.Q5_K_S.gguf) | Q5_K_S | 0.42GB |
34
+ | [Sailor-0.5B-Chat.Q5_K.gguf](https://huggingface.co/RichardErkhov/sail_-_Sailor-0.5B-Chat-gguf/blob/main/Sailor-0.5B-Chat.Q5_K.gguf) | Q5_K | 0.43GB |
35
+ | [Sailor-0.5B-Chat.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/sail_-_Sailor-0.5B-Chat-gguf/blob/main/Sailor-0.5B-Chat.Q5_K_M.gguf) | Q5_K_M | 0.43GB |
36
+ | [Sailor-0.5B-Chat.Q5_1.gguf](https://huggingface.co/RichardErkhov/sail_-_Sailor-0.5B-Chat-gguf/blob/main/Sailor-0.5B-Chat.Q5_1.gguf) | Q5_1 | 0.45GB |
37
+ | [Sailor-0.5B-Chat.Q6_K.gguf](https://huggingface.co/RichardErkhov/sail_-_Sailor-0.5B-Chat-gguf/blob/main/Sailor-0.5B-Chat.Q6_K.gguf) | Q6_K | 0.48GB |
38
+ | [Sailor-0.5B-Chat.Q8_0.gguf](https://huggingface.co/RichardErkhov/sail_-_Sailor-0.5B-Chat-gguf/blob/main/Sailor-0.5B-Chat.Q8_0.gguf) | Q8_0 | 0.62GB |
39
+
40
+
41
+
42
+
43
+ Original model description:
44
+ ---
45
+ language:
46
+ - en
47
+ - zh
48
+ - id
49
+ - th
50
+ - vi
51
+ - ms
52
+ - lo
53
+ datasets:
54
+ - CohereForAI/aya_dataset
55
+ - CohereForAI/aya_collection
56
+ - Open-Orca/OpenOrca
57
+ tags:
58
+ - multilingual
59
+ - sea
60
+ - sailor
61
+ - sft
62
+ - chat
63
+ - instruction
64
+ widget:
65
+ - text: "如何制作烤鱼?"
66
+ example_title: "Chinese"
67
+ - text: "How to bake fish?"
68
+ example_title: "English"
69
+ - text: "Bagaimana cara memanggang ikan?"
70
+ example_title: "Malay"
71
+ - text: "วิธีย่างปลา?"
72
+ example_title: "Thai"
73
+ - text: "Bagaimana membuat bakaran ikan?"
74
+ example_title: "Indonesian"
75
+ - text: "Làm thế nào để nướng cá?"
76
+ example_title: "Vietnamese"
77
+
78
+ license: apache-2.0
79
+ base_model: sail/Sailor-0.5B
80
+ inference: false
81
+ ---
82
+
83
+ <div align="center">
84
+ <img src="banner_sailor.jpg" width="700"/>
85
+ </div>
86
+
87
+ Sailor is a suite of Open Language Models tailored for South-East Asia (SEA), focusing on languages such as 🇮🇩Indonesian, 🇹🇭Thai, 🇻🇳Vietnamese, 🇲🇾Malay, and 🇱🇦Lao.
88
+ Developed with careful data curation, Sailor models are designed to understand and generate text across diverse linguistic landscapes of SEA region.
89
+ Built from [Qwen 1.5](https://huggingface.co/collections/Qwen/qwen15-65c0a2f577b1ecb76d786524) , Sailor encompasses models of varying sizes, spanning from 0.5B to 7B versions for different requirements.
90
+ We further fine-tune the base model with open-source datasets to get instruction-tuned models, namedly Sailor-Chat.
91
+ Benchmarking results demonstrate Sailor's proficiency in tasks such as question answering, commonsense reasoning, and other tasks in SEA languages.
92
+
93
+ > The logo was generated by MidJourney
94
+
95
+ ## Model Summary
96
+ - **Model Collections:** [Base Model & Chat Model](https://huggingface.co/collections/sail/sailor-65e19a749f978976f1959825)
97
+ - **Project Website:** [sailorllm.github.io](https://sailorllm.github.io/)
98
+ - **Codebase:** [github.com/sail-sg/sailor-llm](https://github.com/sail-sg/sailor-llm)
99
+ - **Technical Report:** [arxiv.org/pdf/2404.03608.pdf](https://arxiv.org/pdf/2404.03608.pdf)
100
+
101
+
102
+ ## Training details
103
+ Sailor is crafted by continually pre-training from language models like the remarkable Qwen 1.5 models, which already has a great performance on SEA languages.
104
+ The pre-training corpus heavily leverages the publicly available corpus, including
105
+ [SlimPajama](https://huggingface.co/datasets/cerebras/SlimPajama-627B),
106
+ [SkyPile](https://huggingface.co/datasets/Skywork/SkyPile-150B),
107
+ [CC100](https://huggingface.co/datasets/cc100) and [MADLAD-400](https://huggingface.co/datasets/allenai/MADLAD-400).
108
+ The instruction tuning corpus are all publicly available including
109
+ [aya_collection](https://huggingface.co/datasets/CohereForAI/aya_collection),
110
+ [aya_dataset](https://huggingface.co/datasets/CohereForAI/aya_dataset),
111
+ [OpenOrca](https://huggingface.co/datasets/Open-Orca/OpenOrca).
112
+
113
+ By employing aggressive data deduplication and careful data cleaning on the collected corpus, we have attained a high-quality dataset spanning various languages.
114
+ Through systematic experiments to determine the weights of different languages, Sailor models undergo training from 200B to 400B tokens, tailored to different model sizes.
115
+ The approach boosts their performance on SEA languages while maintaining proficiency in English and Chinese without significant compromise.
116
+ Finally, we continually pre-train the Qwen1.5-0.5B model with 400 Billion tokens, and other models with 200 Billion tokens to obtain the Sailor models.
117
+
118
+ ## Requirements
119
+ The code of Sailor has been in the latest Hugging face transformers and we advise you to install `transformers>=4.37.0`.
120
+
121
+ ## Quickstart
122
+
123
+ Here provides a code snippet to show you how to load the tokenizer and model and how to generate contents.
124
+
125
+ ```python
126
+ from transformers import AutoModelForCausalLM, AutoTokenizer
127
+ device = "cuda"
128
+
129
+ model = AutoModelForCausalLM.from_pretrained(
130
+ 'sail/Sailor-0.5B-Chat',
131
+ torch_dtype="auto",
132
+ device_map="auto"
133
+ )
134
+
135
+ tokenizer = AutoTokenizer.from_pretrained('sail/Sailor-0.5B-Chat')
136
+ system_prompt= 'You are a helpful assistant'
137
+
138
+ prompt = "Beri saya pengenalan singkat tentang model bahasa besar."
139
+ # prompt = "Hãy cho tôi một giới thiệu ngắn gọn về mô hình ngôn ngữ lớn."
140
+ # prompt = "ให้ฉันแนะนำสั้น ๆ เกี่ยวกับโมเดลภาษาขนาดใหญ่"
141
+
142
+ messages = [
143
+ {"role": "system", "content": system_prompt},
144
+ {"role": "question", "content": prompt}
145
+ ]
146
+ text = tokenizer.apply_chat_template(
147
+ messages,
148
+ tokenize=False,
149
+ add_generation_prompt=True
150
+ )
151
+
152
+ model_inputs = tokenizer([text], return_tensors="pt").to(device)
153
+ input_ids = model_inputs.input_ids.to(device)
154
+
155
+ generated_ids = model.generate(
156
+ input_ids,
157
+ max_new_tokens=512,
158
+ )
159
+
160
+ generated_ids = [
161
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
162
+ ]
163
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
164
+ print(response)
165
+ ```
166
+
167
+ # License
168
+
169
+ Sailor is distributed under the terms of the Apache License 2.0.
170
+ No restrict on the research and the commercial use, but should comply with the [Qwen License](https://huggingface.co/Qwen/Qwen1.5-1.8B/blob/main/LICENSE).
171
+
172
+ ## Citation
173
+
174
+ If you find sailor useful, please cite our work as follows:
175
+
176
+ ```
177
+ @misc{dou2024sailor,
178
+ title={Sailor: Open Language Models for South-East Asia},
179
+ author={Longxu Dou and Qian Liu and Guangtao Zeng and Jia Guo and Jiahui Zhou and Wei Lu and Min Lin},
180
+ year={2024},
181
+ eprint={2404.03608},
182
+ archivePrefix={arXiv},
183
+ primaryClass={cs.CL}
184
+ }
185
+ ```
186
+
187
+ # Contact Us
188
+
189
+ If you have any questions, please raise an issue or contact us at [[email protected]](mailto:[email protected]) or [[email protected]](mailto:[email protected]).
190
+