RichardErkhov
commited on
uploaded readme
Browse files
README.md
ADDED
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Quantization made by Richard Erkhov.
|
2 |
+
|
3 |
+
[Github](https://github.com/RichardErkhov)
|
4 |
+
|
5 |
+
[Discord](https://discord.gg/pvy7H8DZMG)
|
6 |
+
|
7 |
+
[Request more models](https://github.com/RichardErkhov/quant_request)
|
8 |
+
|
9 |
+
|
10 |
+
japanese-gpt-neox-3.6b-instruction-sft - bnb 4bits
|
11 |
+
- Model creator: https://huggingface.co/rinna/
|
12 |
+
- Original model: https://huggingface.co/rinna/japanese-gpt-neox-3.6b-instruction-sft/
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
Original model description:
|
18 |
+
---
|
19 |
+
language: ja
|
20 |
+
thumbnail: https://github.com/rinnakk/japanese-pretrained-models/blob/master/rinna.png
|
21 |
+
tags:
|
22 |
+
- gpt_neox
|
23 |
+
- text-generation
|
24 |
+
- lm
|
25 |
+
- nlp
|
26 |
+
license: mit
|
27 |
+
datasets:
|
28 |
+
- Anthropic/hh-rlhf
|
29 |
+
- stanfordnlp/SHP
|
30 |
+
inference: false
|
31 |
+
base_model: rinna/japanese-gpt-neox-3.6b
|
32 |
+
---
|
33 |
+
|
34 |
+
# japanese-gpt-neox-3.6b-instruction-sft
|
35 |
+
|
36 |
+
![rinna-icon](./rinna.png)
|
37 |
+
|
38 |
+
# Overview
|
39 |
+
This repository provides a Japanese GPT-NeoX model of 3.6 billion parameters. The model is based on [`rinna/japanese-gpt-neox-3.6b`](https://huggingface.co/rinna/japanese-gpt-neox-3.6b) and has been finetuned to serve as an instruction-following conversational agent.
|
40 |
+
|
41 |
+
* **Model architecture**
|
42 |
+
|
43 |
+
A 36-layer, 2816-hidden-size transformer-based language model.
|
44 |
+
|
45 |
+
* **Finetuning**
|
46 |
+
|
47 |
+
The finetuning data is the subset of the following datasets and has been translated into Japanese.
|
48 |
+
* [Anthropic HH RLHF data](https://huggingface.co/datasets/Anthropic/hh-rlhf)
|
49 |
+
* [FLAN Instruction Tuning data](https://github.com/google-research/FLAN)
|
50 |
+
* [Stanford Human Preferences Dataset](https://huggingface.co/datasets/stanfordnlp/SHP)
|
51 |
+
|
52 |
+
The data will **not** be released.
|
53 |
+
|
54 |
+
* **Model Series**
|
55 |
+
|
56 |
+
| Variant | Link |
|
57 |
+
| :-- | :--|
|
58 |
+
| 3.6B PPO | https://huggingface.co/rinna/japanese-gpt-neox-3.6b-instruction-ppo |
|
59 |
+
| 3.6B SFT-v2 | https://huggingface.co/rinna/japanese-gpt-neox-3.6b-instruction-sft-v2 |
|
60 |
+
| 3.6B SFT | https://huggingface.co/rinna/japanese-gpt-neox-3.6b-instruction-sft |
|
61 |
+
| 3.6B pretrained | https://huggingface.co/rinna/japanese-gpt-neox-3.6b |
|
62 |
+
|
63 |
+
* **Contributors**
|
64 |
+
|
65 |
+
[Tianyu Zhao](https://huggingface.co/tianyuz) and [Kei Sawada](https://huggingface.co/keisawada)
|
66 |
+
|
67 |
+
# I/O Format
|
68 |
+
A special format has been adopted to construct inputs.
|
69 |
+
* An input prompt is formatted as a conversation between `ユーザー` and `システム`.
|
70 |
+
* Each input utterance consists of (1) its speaker (`"ユーザー"` or `"システム"`), (2) a colon (`":"`), (3) a whitespace (`" "`), and (4) utterance text (e.g. `"世界で一番高い山は?"`).
|
71 |
+
* The input prompt should be ended with `"システム: "` to acknowledge the model to generate a response.
|
72 |
+
* Since the model's tokenizer does not recognize `"\n"`, a special newline symbol `"<NL>"` is used instead.
|
73 |
+
* All the newlines in input and output utterances should be replaced with `"<NL>"`.
|
74 |
+
* All the utterances in the input prompt should be separated by `"<NL>"`.
|
75 |
+
|
76 |
+
Following is an example to construct an input from a conversation.
|
77 |
+
~~~python
|
78 |
+
prompt = [
|
79 |
+
{
|
80 |
+
"speaker": "ユーザー",
|
81 |
+
"text": "日本のおすすめの観光地を教えてください。"
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"speaker": "システム",
|
85 |
+
"text": "どの地域の観光地が知りたいですか?"
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"speaker": "ユーザー",
|
89 |
+
"text": "渋谷の観光地を教えてください。"
|
90 |
+
}
|
91 |
+
]
|
92 |
+
prompt = [
|
93 |
+
f"{uttr['speaker']}: {uttr['text']}"
|
94 |
+
for uttr in prompt
|
95 |
+
]
|
96 |
+
prompt = "<NL>".join(prompt)
|
97 |
+
prompt = (
|
98 |
+
prompt
|
99 |
+
+ "<NL>"
|
100 |
+
+ "システム: "
|
101 |
+
)
|
102 |
+
print(prompt)
|
103 |
+
# "ユーザー: 日本のおすすめの観光地を教えてください。<NL>システム: どの地域の観光地が知りたいですか?<NL>ユーザー: 渋谷の観光地を教えてください。<NL>システム: "
|
104 |
+
~~~
|
105 |
+
|
106 |
+
# How to use the model
|
107 |
+
|
108 |
+
~~~~python
|
109 |
+
import torch
|
110 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
111 |
+
|
112 |
+
tokenizer = AutoTokenizer.from_pretrained("rinna/japanese-gpt-neox-3.6b-instruction-sft", use_fast=False)
|
113 |
+
model = AutoModelForCausalLM.from_pretrained("rinna/japanese-gpt-neox-3.6b-instruction-sft")
|
114 |
+
|
115 |
+
if torch.cuda.is_available():
|
116 |
+
model = model.to("cuda")
|
117 |
+
|
118 |
+
token_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
|
119 |
+
|
120 |
+
with torch.no_grad():
|
121 |
+
output_ids = model.generate(
|
122 |
+
token_ids.to(model.device),
|
123 |
+
do_sample=True,
|
124 |
+
max_new_tokens=128,
|
125 |
+
temperature=0.7,
|
126 |
+
pad_token_id=tokenizer.pad_token_id,
|
127 |
+
bos_token_id=tokenizer.bos_token_id,
|
128 |
+
eos_token_id=tokenizer.eos_token_id
|
129 |
+
)
|
130 |
+
|
131 |
+
output = tokenizer.decode(output_ids.tolist()[0][token_ids.size(1):])
|
132 |
+
output = output.replace("<NL>", "\n")
|
133 |
+
print(output)
|
134 |
+
"""分かりました。いくつかのおすすめを紹介します。
|
135 |
+
1. ハチ公像です。ハチ公像は、日本の観光スポットの1つとして人気があります。
|
136 |
+
2. スクランブル交差点です。多くの人々が行き交う大きな交差点で、観光客に人気のスポットです。
|
137 |
+
3. 109です。109は、ショッピングやエンターテイメント施設です。
|
138 |
+
4. 道玄坂です。道玄坂は、日本の商業地区である坂道です。</s>"""
|
139 |
+
~~~~
|
140 |
+
|
141 |
+
# Tokenization
|
142 |
+
The model uses a [sentencepiece](https://github.com/google/sentencepiece)-based tokenizer.
|
143 |
+
* The tokenizer has a vocabulary size of 32,000.
|
144 |
+
* It uses sentencepiece's byte fallback feature to decompose unknown text pieces into UTF-8 byte pieces and to avoid producing `<UNK>` tokens.
|
145 |
+
* sentencepiece's `--add_dummy_prefix` option was turned off so that a leading whitespace will not be prepended automatically.
|
146 |
+
~~~
|
147 |
+
print(tokenizer.tokenize("吾輩は猫である"))
|
148 |
+
# ['吾', '輩', 'は', '猫', 'である']
|
149 |
+
# instead of ['▁', '吾', '輩', 'は', '猫', 'である'] as in rinna/japanese-gpt-1b
|
150 |
+
~~~
|
151 |
+
* sentencepiece's `--remove_extra_whitespaces` option was turned off so that leading, trailing, and duplicate whitespaces are reserved.
|
152 |
+
~~~
|
153 |
+
print(tokenizer.tokenize(" 吾輩は 猫である "))
|
154 |
+
# ['▁', '▁', '吾', '輩', 'は', '▁', '▁', '猫', 'である', '▁', '▁', '▁']
|
155 |
+
# instead of ['▁', '吾', '輩', 'は', '▁猫', 'である'] as in rinna/japanese-gpt-1b
|
156 |
+
~~~
|
157 |
+
* Don't forget to set `use_fast=False` to make the above features function correctly.
|
158 |
+
~~~
|
159 |
+
good_tokenizer = AutoTokenizer.from_pretrained("rinna/japanese-gpt-neox-3.6b", use_fast=False)
|
160 |
+
bad_tokenizer = AutoTokenizer.from_pretrained("rinna/japanese-gpt-neox-3.6b")
|
161 |
+
|
162 |
+
print(good_tokenizer.decode(good_tokenizer.encode("გამარჯობა 吾輩は 猫である ")))
|
163 |
+
# 'გამარჯობა 吾輩は 猫である </s>'
|
164 |
+
print(bad_tokenizer.decode(bad_tokenizer.encode("გამარჯობა 吾輩は 猫である ")))
|
165 |
+
# 'გამარ[UNK]ობა 吾輩は 猫である </s>'
|
166 |
+
~~~
|
167 |
+
|
168 |
+
# How to cite
|
169 |
+
```bibtex
|
170 |
+
@misc{rinna-japanese-gpt-neox-3.6b-instruction-sft,
|
171 |
+
title = {rinna/japanese-gpt-neox-3.6b-instruction-sft},
|
172 |
+
author = {Zhao, Tianyu and Sawada, Kei},
|
173 |
+
url = {https://huggingface.co/rinna/japanese-gpt-neox-3.6b-instruction-sft}
|
174 |
+
}
|
175 |
+
|
176 |
+
@inproceedings{sawada2024release,
|
177 |
+
title = {Release of Pre-Trained Models for the {J}apanese Language},
|
178 |
+
author = {Sawada, Kei and Zhao, Tianyu and Shing, Makoto and Mitsui, Kentaro and Kaga, Akio and Hono, Yukiya and Wakatsuki, Toshiaki and Mitsuda, Koh},
|
179 |
+
booktitle = {Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)},
|
180 |
+
month = {5},
|
181 |
+
year = {2024},
|
182 |
+
pages = {13898--13905},
|
183 |
+
url = {https://aclanthology.org/2024.lrec-main.1213},
|
184 |
+
note = {\url{https://arxiv.org/abs/2404.01657}}
|
185 |
+
}
|
186 |
+
```
|
187 |
+
|
188 |
+
# Licenese
|
189 |
+
[The MIT license](https://opensource.org/licenses/MIT)
|
190 |
+
|