Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Phi-3.5-vision-instruct_20240915_223241 - AWQ - Model creator: https://huggingface.co/muhtasham/ - Original model: https://huggingface.co/muhtasham/Phi-3.5-vision-instruct_20240915_223241/ Original model description: --- library_name: transformers license: mit base_model: microsoft/Phi-3.5-vision-instruct tags: - generated_from_trainer model-index: - name: Phi-3.5-vision-instruct_20240915_223241 results: [] --- # Phi-3.5-vision-instruct_20240915_223241 This model is a fine-tuned version of [microsoft/Phi-3.5-vision-instruct](https://huggingface.co/microsoft/Phi-3.5-vision-instruct) on the None dataset. ## Model description On 1.8M avg dataset ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-07 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1