File size: 1,789 Bytes
39f2920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
Quantization made by Richard Erkhov.

[Github](https://github.com/RichardErkhov)

[Discord](https://discord.gg/pvy7H8DZMG)

[Request more models](https://github.com/RichardErkhov/quant_request)


Phi-3.5-vision-instruct_20240915_223241 - AWQ
- Model creator: https://huggingface.co/muhtasham/
- Original model: https://huggingface.co/muhtasham/Phi-3.5-vision-instruct_20240915_223241/




Original model description:
---
library_name: transformers
license: mit
base_model: microsoft/Phi-3.5-vision-instruct
tags:
- generated_from_trainer
model-index:
- name: Phi-3.5-vision-instruct_20240915_223241
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Phi-3.5-vision-instruct_20240915_223241

This model is a fine-tuned version of [microsoft/Phi-3.5-vision-instruct](https://huggingface.co/microsoft/Phi-3.5-vision-instruct) on the None dataset.

## Model description

On 1.8M avg dataset

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-07
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 4
- mixed_precision_training: Native AMP

### Training results



### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.0
- Tokenizers 0.19.1