RichardErkhov commited on
Commit
a279022
·
verified ·
1 Parent(s): b609197

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +486 -0
README.md ADDED
@@ -0,0 +1,486 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ gemma-7b - GGUF
11
+ - Model creator: https://huggingface.co/mhenrichsen/
12
+ - Original model: https://huggingface.co/mhenrichsen/gemma-7b/
13
+
14
+
15
+ | Name | Quant method | Size |
16
+ | ---- | ---- | ---- |
17
+ | [gemma-7b.Q2_K.gguf](https://huggingface.co/RichardErkhov/mhenrichsen_-_gemma-7b-gguf/blob/main/gemma-7b.Q2_K.gguf) | Q2_K | 3.24GB |
18
+ | [gemma-7b.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/mhenrichsen_-_gemma-7b-gguf/blob/main/gemma-7b.IQ3_XS.gguf) | IQ3_XS | 3.54GB |
19
+ | [gemma-7b.IQ3_S.gguf](https://huggingface.co/RichardErkhov/mhenrichsen_-_gemma-7b-gguf/blob/main/gemma-7b.IQ3_S.gguf) | IQ3_S | 3.71GB |
20
+ | [gemma-7b.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/mhenrichsen_-_gemma-7b-gguf/blob/main/gemma-7b.Q3_K_S.gguf) | Q3_K_S | 3.71GB |
21
+ | [gemma-7b.IQ3_M.gguf](https://huggingface.co/RichardErkhov/mhenrichsen_-_gemma-7b-gguf/blob/main/gemma-7b.IQ3_M.gguf) | IQ3_M | 3.82GB |
22
+ | [gemma-7b.Q3_K.gguf](https://huggingface.co/RichardErkhov/mhenrichsen_-_gemma-7b-gguf/blob/main/gemma-7b.Q3_K.gguf) | Q3_K | 4.07GB |
23
+ | [gemma-7b.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/mhenrichsen_-_gemma-7b-gguf/blob/main/gemma-7b.Q3_K_M.gguf) | Q3_K_M | 4.07GB |
24
+ | [gemma-7b.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/mhenrichsen_-_gemma-7b-gguf/blob/main/gemma-7b.Q3_K_L.gguf) | Q3_K_L | 4.39GB |
25
+ | [gemma-7b.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/mhenrichsen_-_gemma-7b-gguf/blob/main/gemma-7b.IQ4_XS.gguf) | IQ4_XS | 4.48GB |
26
+ | [gemma-7b.Q4_0.gguf](https://huggingface.co/RichardErkhov/mhenrichsen_-_gemma-7b-gguf/blob/main/gemma-7b.Q4_0.gguf) | Q4_0 | 4.67GB |
27
+ | [gemma-7b.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/mhenrichsen_-_gemma-7b-gguf/blob/main/gemma-7b.IQ4_NL.gguf) | IQ4_NL | 4.69GB |
28
+ | [gemma-7b.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/mhenrichsen_-_gemma-7b-gguf/blob/main/gemma-7b.Q4_K_S.gguf) | Q4_K_S | 4.7GB |
29
+ | [gemma-7b.Q4_K.gguf](https://huggingface.co/RichardErkhov/mhenrichsen_-_gemma-7b-gguf/blob/main/gemma-7b.Q4_K.gguf) | Q4_K | 4.96GB |
30
+ | [gemma-7b.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/mhenrichsen_-_gemma-7b-gguf/blob/main/gemma-7b.Q4_K_M.gguf) | Q4_K_M | 4.96GB |
31
+ | [gemma-7b.Q4_1.gguf](https://huggingface.co/RichardErkhov/mhenrichsen_-_gemma-7b-gguf/blob/main/gemma-7b.Q4_1.gguf) | Q4_1 | 5.12GB |
32
+ | [gemma-7b.Q5_0.gguf](https://huggingface.co/RichardErkhov/mhenrichsen_-_gemma-7b-gguf/blob/main/gemma-7b.Q5_0.gguf) | Q5_0 | 5.57GB |
33
+ | [gemma-7b.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/mhenrichsen_-_gemma-7b-gguf/blob/main/gemma-7b.Q5_K_S.gguf) | Q5_K_S | 5.57GB |
34
+ | [gemma-7b.Q5_K.gguf](https://huggingface.co/RichardErkhov/mhenrichsen_-_gemma-7b-gguf/blob/main/gemma-7b.Q5_K.gguf) | Q5_K | 5.72GB |
35
+ | [gemma-7b.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/mhenrichsen_-_gemma-7b-gguf/blob/main/gemma-7b.Q5_K_M.gguf) | Q5_K_M | 5.72GB |
36
+ | [gemma-7b.Q5_1.gguf](https://huggingface.co/RichardErkhov/mhenrichsen_-_gemma-7b-gguf/blob/main/gemma-7b.Q5_1.gguf) | Q5_1 | 6.02GB |
37
+ | [gemma-7b.Q6_K.gguf](https://huggingface.co/RichardErkhov/mhenrichsen_-_gemma-7b-gguf/blob/main/gemma-7b.Q6_K.gguf) | Q6_K | 6.53GB |
38
+ | [gemma-7b.Q8_0.gguf](https://huggingface.co/RichardErkhov/mhenrichsen_-_gemma-7b-gguf/blob/main/gemma-7b.Q8_0.gguf) | Q8_0 | 8.21GB |
39
+
40
+
41
+
42
+
43
+ Original model description:
44
+ ---
45
+ library_name: transformers
46
+ ---
47
+
48
+ # Reupload of Google Gemma - Find original readme below.
49
+
50
+ # Gemma Model Card
51
+
52
+ **Model Page**: [Gemma](https://ai.google.dev/gemma/docs)
53
+
54
+ This model card corresponds to the 7B base version of the Gemma model. You can also visit the model card of the [2B base model](https://huggingface.co/google/gemma-2b), [7B instruct model](https://huggingface.co/google/gemma-7b-it), and [2B instruct model](https://huggingface.co/google/gemma-2b-it).
55
+
56
+ **Resources and Technical Documentation**:
57
+
58
+ * [Responsible Generative AI Toolkit](https://ai.google.dev/responsible)
59
+ * [Gemma on Kaggle](https://www.kaggle.com/models/google/gemma)
60
+ * [Gemma on Vertex Model Garden](https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/335?version=gemma-7b-gg-hf)
61
+
62
+ **Terms of Use**: [Terms](https://www.kaggle.com/models/google/gemma/license/consent)
63
+
64
+ **Authors**: Google
65
+
66
+ ## Model Information
67
+
68
+ Summary description and brief definition of inputs and outputs.
69
+
70
+ ### Description
71
+
72
+ Gemma is a family of lightweight, state-of-the-art open models from Google,
73
+ built from the same research and technology used to create the Gemini models.
74
+ They are text-to-text, decoder-only large language models, available in English,
75
+ with open weights, pre-trained variants, and instruction-tuned variants. Gemma
76
+ models are well-suited for a variety of text generation tasks, including
77
+ question answering, summarization, and reasoning. Their relatively small size
78
+ makes it possible to deploy them in environments with limited resources such as
79
+ a laptop, desktop or your own cloud infrastructure, democratizing access to
80
+ state of the art AI models and helping foster innovation for everyone.
81
+
82
+ ### Usage
83
+
84
+ Below we share some code snippets on how to get quickly started with running the model. First make sure to `pip install -U transformers`, then copy the snippet from the section that is relevant for your usecase.
85
+
86
+ #### Fine-tuning examples
87
+
88
+ You can find fine-tuning notebooks under the [`examples/` directory](https://huggingface.co/google/gemma-7b/tree/main/examples). We provide:
89
+
90
+ * A script to perform Supervised Fine-Tuning (SFT) on UltraChat dataset using [QLoRA](https://huggingface.co/papers/2305.14314)
91
+ * A script to perform SFT using FSDP on TPU devices
92
+ * A notebook that you can run on a free-tier Google Colab instance to perform SFT on English quotes dataset
93
+
94
+ #### Running the model on a CPU
95
+
96
+
97
+ ```python
98
+ from transformers import AutoTokenizer, AutoModelForCausalLM
99
+
100
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
101
+ model = AutoModelForCausalLM.from_pretrained("google/gemma-7b")
102
+
103
+ input_text = "Write me a poem about Machine Learning."
104
+ input_ids = tokenizer(**input_text, return_tensors="pt")
105
+
106
+ outputs = model.generate(input_ids)
107
+ print(tokenizer.decode(outputs[0]))
108
+ ```
109
+
110
+
111
+ #### Running the model on a single / multi GPU
112
+
113
+
114
+ ```python
115
+ # pip install accelerate
116
+ from transformers import AutoTokenizer, AutoModelForCausalLM
117
+
118
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
119
+ model = AutoModelForCausalLM.from_pretrained("google/gemma-7b", device_map="auto")
120
+
121
+ input_text = "Write me a poem about Machine Learning."
122
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
123
+
124
+ outputs = model.generate(**input_ids)
125
+ print(tokenizer.decode(outputs[0]))
126
+ ```
127
+
128
+
129
+ #### Running the model on a GPU using different precisions
130
+
131
+ * _Using `torch.float16`_
132
+
133
+ ```python
134
+ # pip install accelerate
135
+ from transformers import AutoTokenizer, AutoModelForCausalLM
136
+
137
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
138
+ model = AutoModelForCausalLM.from_pretrained("google/gemma-7b", device_map="auto", torch_dtype=torch.float16)
139
+
140
+ input_text = "Write me a poem about Machine Learning."
141
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
142
+
143
+ outputs = model.generate(**input_ids)
144
+ print(tokenizer.decode(outputs[0]))
145
+ ```
146
+
147
+ * _Using `torch.bfloat16`_
148
+
149
+ ```python
150
+ # pip install accelerate
151
+ from transformers import AutoTokenizer, AutoModelForCausalLM
152
+
153
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
154
+ model = AutoModelForCausalLM.from_pretrained("google/gemma-7b", device_map="auto", torch_dtype=torch.bfloat16)
155
+
156
+ input_text = "Write me a poem about Machine Learning."
157
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
158
+
159
+ outputs = model.generate(**input_ids)
160
+ print(tokenizer.decode(outputs[0]))
161
+ ```
162
+
163
+ #### Quantized Versions through `bitsandbytes`
164
+
165
+ * _Using 8-bit precision (int8)_
166
+
167
+ ```python
168
+ # pip install bitsandbytes accelerate
169
+ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
170
+
171
+ quantization_config = BitsAndBytesConfig(load_in_8bit=True)
172
+
173
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
174
+ model = AutoModelForCausalLM.from_pretrained("google/gemma-7b", quantization_config=quantization_config)
175
+
176
+ input_text = "Write me a poem about Machine Learning."
177
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
178
+
179
+ outputs = model.generate(**input_ids)
180
+ print(tokenizer.decode(outputs[0]))
181
+ ```
182
+
183
+ * _Using 4-bit precision_
184
+
185
+ ```python
186
+ # pip install bitsandbytes accelerate
187
+ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
188
+
189
+ quantization_config = BitsAndBytesConfig(load_in_4bit=True)
190
+
191
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
192
+ model = AutoModelForCausalLM.from_pretrained("google/gemma-7b", quantization_config=quantization_config)
193
+
194
+ input_text = "Write me a poem about Machine Learning."
195
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
196
+
197
+ outputs = model.generate(**input_ids)
198
+ print(tokenizer.decode(outputs[0]))
199
+ ```
200
+
201
+
202
+ #### Other optimizations
203
+
204
+ * _Flash Attention 2_
205
+
206
+ First make sure to install `flash-attn` in your environment `pip install flash-attn`
207
+
208
+ ```diff
209
+ model = AutoModelForCausalLM.from_pretrained(
210
+ model_id,
211
+ torch_dtype=torch.float16,
212
+ + attn_implementation="flash_attention_2"
213
+ ).to(0)
214
+ ```
215
+
216
+ ### Inputs and outputs
217
+
218
+ * **Input:** Text string, such as a question, a prompt, or a document to be
219
+ summarized.
220
+ * **Output:** Generated English-language text in response to the input, such
221
+ as an answer to a question, or a summary of a document.
222
+
223
+ ## Model Data
224
+
225
+ Data used for model training and how the data was processed.
226
+
227
+ ### Training Dataset
228
+
229
+ These models were trained on a dataset of text data that includes a wide variety
230
+ of sources, totaling 6 trillion tokens. Here are the key components:
231
+
232
+ * Web Documents: A diverse collection of web text ensures the model is exposed
233
+ to a broad range of linguistic styles, topics, and vocabulary. Primarily
234
+ English-language content.
235
+ * Code: Exposing the model to code helps it to learn the syntax and patterns of
236
+ programming languages, which improves its ability to generate code or
237
+ understand code-related questions.
238
+ * Mathematics: Training on mathematical text helps the model learn logical
239
+ reasoning, symbolic representation, and to address mathematical queries.
240
+
241
+ The combination of these diverse data sources is crucial for training a powerful
242
+ language model that can handle a wide variety of different tasks and text
243
+ formats.
244
+
245
+ ### Data Preprocessing
246
+
247
+ Here are the key data cleaning and filtering methods applied to the training
248
+ data:
249
+
250
+ * CSAM Filtering: Rigorous CSAM (Child Sexual Abuse Material) filtering was
251
+ applied at multiple stages in the data preparation process to ensure the
252
+ exclusion of harmful and illegal content
253
+ * Sensitive Data Filtering: As part of making Gemma pre-trained models safe and
254
+ reliable, automated techniques were used to filter out certain personal
255
+ information and other sensitive data from training sets.
256
+ * Additional methods: Filtering based on content quality and safely in line with
257
+ [our policies](https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11).
258
+
259
+ ## Implementation Information
260
+
261
+ Details about the model internals.
262
+
263
+ ### Hardware
264
+
265
+ Gemma was trained using the latest generation of
266
+ [Tensor Processing Unit (TPU)](https://cloud.google.com/tpu/docs/intro-to-tpu) hardware (TPUv5e).
267
+
268
+ Training large language models requires significant computational power. TPUs,
269
+ designed specifically for matrix operations common in machine learning, offer
270
+ several advantages in this domain:
271
+
272
+ * Performance: TPUs are specifically designed to handle the massive computations
273
+ involved in training LLMs. They can speed up training considerably compared to
274
+ CPUs.
275
+ * Memory: TPUs often come with large amounts of high-bandwidth memory, allowing
276
+ for the handling of large models and batch sizes during training. This can
277
+ lead to better model quality.
278
+ * Scalability: TPU Pods (large clusters of TPUs) provide a scalable solution for
279
+ handling the growing complexity of large foundation models. You can distribute
280
+ training across multiple TPU devices for faster and more efficient processing.
281
+ * Cost-effectiveness: In many scenarios, TPUs can provide a more cost-effective
282
+ solution for training large models compared to CPU-based infrastructure,
283
+ especially when considering the time and resources saved due to faster
284
+ training.
285
+ * These advantages are aligned with
286
+ [Google's commitments to operate sustainably](https://sustainability.google/operating-sustainably/).
287
+
288
+ ### Software
289
+
290
+ Training was done using [JAX](https://github.com/google/jax) and [ML Pathways](https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture).
291
+
292
+ JAX allows researchers to take advantage of the latest generation of hardware,
293
+ including TPUs, for faster and more efficient training of large models.
294
+
295
+ ML Pathways is Google's latest effort to build artificially intelligent systems
296
+ capable of generalizing across multiple tasks. This is specially suitable for
297
+ [foundation models](https://ai.google/discover/foundation-models/), including large language models like
298
+ these ones.
299
+
300
+ Together, JAX and ML Pathways are used as described in the
301
+ [paper about the Gemini family of models](https://arxiv.org/abs/2312.11805); "the 'single
302
+ controller' programming model of Jax and Pathways allows a single Python
303
+ process to orchestrate the entire training run, dramatically simplifying the
304
+ development workflow."
305
+
306
+ ## Evaluation
307
+
308
+ Model evaluation metrics and results.
309
+
310
+ ### Benchmark Results
311
+
312
+ These models were evaluated against a large collection of different datasets and
313
+ metrics to cover different aspects of text generation:
314
+
315
+ | Benchmark | Metric | 2B Params | 7B Params |
316
+ | ------------------------------ | ------------- | ----------- | --------- |
317
+ | [MMLU](https://arxiv.org/abs/2009.03300) | 5-shot, top-1 | 42.3 | 64.3 |
318
+ | [HellaSwag](https://arxiv.org/abs/1905.07830) | 0-shot |71.4 | 81.2 |
319
+ | [PIQA](https://arxiv.org/abs/1911.11641) | 0-shot | 77.3 | 81.2 |
320
+ | [SocialIQA](https://arxiv.org/abs/1904.09728) | 0-shot | 59.7 | 51.8 |
321
+ | [BooIQ](https://arxiv.org/abs/1905.10044) | 0-shot | 69.4 | 83.2 |
322
+ | [WinoGrande](https://arxiv.org/abs/1907.10641) | partial score | 65.4 | 72.3 |
323
+ | [CommonsenseQA](https://arxiv.org/abs/1811.00937) | 7-shot | 65.3 | 71.3 |
324
+ | [OpenBookQA](https://arxiv.org/abs/1809.02789) | | 47.8 | 52.8 |
325
+ | [ARC-e](https://arxiv.org/abs/1911.01547) | | 73.2 | 81.5 |
326
+ | [ARC-c](https://arxiv.org/abs/1911.01547) | | 42.1 | 53.2 |
327
+ | [TriviaQA](https://arxiv.org/abs/1705.03551) | 5-shot | 53.2 | 63.4 |
328
+ | [Natural Questions](https://github.com/google-research-datasets/natural-questions) | 5-shot | - | 23 |
329
+ | [HumanEval](https://arxiv.org/abs/2107.03374) | pass@1 | 22.0 | 32.3 |
330
+ | [MBPP](https://arxiv.org/abs/2108.07732) | 3-shot | 29.2 | 44.4 |
331
+ | [GSM8K](https://arxiv.org/abs/2110.14168) | maj@1 | 17.7 | 46.4 |
332
+ | [MATH](https://arxiv.org/abs/2108.07732) | 4-shot | 11.8 | 24.3 |
333
+ | [AGIEval](https://arxiv.org/abs/2304.06364) | | 24.2 | 41.7 |
334
+ | [BIG-Bench](https://arxiv.org/abs/2206.04615) | | 35.2 | 55.1 |
335
+ | ------------------------------ | ------------- | ----------- | --------- |
336
+ | **Average** | | **54.0** | **56.4** |
337
+
338
+ ## Ethics and Safety
339
+
340
+ Ethics and safety evaluation approach and results.
341
+
342
+ ### Evaluation Approach
343
+
344
+ Our evaluation methods include structured evaluations and internal red-teaming
345
+ testing of relevant content policies. Red-teaming was conducted by a number of
346
+ different teams, each with different goals and human evaluation metrics. These
347
+ models were evaluated against a number of different categories relevant to
348
+ ethics and safety, including:
349
+
350
+ * Text-to-Text Content Safety: Human evaluation on prompts covering safety
351
+ policies including child sexual abuse and exploitation, harassment, violence
352
+ and gore, and hate speech.
353
+ * Text-to-Text Representational Harms: Benchmark against relevant academic
354
+ datasets such as [WinoBias](https://arxiv.org/abs/1804.06876) and [BBQ Dataset](https://arxiv.org/abs/2110.08193v2).
355
+ * Memorization: Automated evaluation of memorization of training data, including
356
+ the risk of personally identifiable information exposure.
357
+ * Large-scale harm: Tests for "dangerous capabilities," such as chemical,
358
+ biological, radiological, and nuclear (CBRN) risks.
359
+
360
+ ### Evaluation Results
361
+
362
+ The results of ethics and safety evaluations are within acceptable thresholds
363
+ for meeting [internal policies](https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11) for categories such as child
364
+ safety, content safety, representational harms, memorization, large-scale harms.
365
+ On top of robust internal evaluations, the results of well known safety
366
+ benchmarks like BBQ, BOLD, Winogender, Winobias, RealToxicity, and TruthfulQA
367
+ are shown here.
368
+
369
+ | Benchmark | Metric | 2B Params | 7B Params |
370
+ | ------------------------------ | ------------- | ----------- | --------- |
371
+ | [RealToxicity](https://arxiv.org/abs/2009.11462) | average | 6.86 | 7.90 |
372
+ | [BOLD](https://arxiv.org/abs/2101.11718) | | 45.57 | 49.08 |
373
+ | [CrowS-Pairs](https://aclanthology.org/2020.emnlp-main.154/) | top-1 | 45.82 | 51.33 |
374
+ | [BBQ Ambig](https://arxiv.org/abs/2110.08193v2) | 1-shot, top-1 | 62.58 | 92.54 |
375
+ | [BBQ Disambig](https://arxiv.org/abs/2110.08193v2) | top-1 | 54.62 | 71.99 |
376
+ | [Winogender](https://arxiv.org/abs/1804.09301) | top-1 | 51.25 | 54.17 |
377
+ | [TruthfulQA](https://arxiv.org/abs/2109.07958) | | 44.84 | 31.81 |
378
+ | [Winobias 1_2](https://arxiv.org/abs/1804.06876) | | 56.12 | 59.09 |
379
+ | [Winobias 2_2](https://arxiv.org/abs/1804.06876) | | 91.10 | 92.23 |
380
+ | [Toxigen](https://arxiv.org/abs/2203.09509) | | 29.77 | 39.59 |
381
+ | ------------------------------ | ------------- | ----------- | --------- |
382
+
383
+
384
+ ## Usage and Limitations
385
+
386
+ These models have certain limitations that users should be aware of.
387
+
388
+ ### Intended Usage
389
+
390
+ Open Large Language Models (LLMs) have a wide range of applications across
391
+ various industries and domains. The following list of potential uses is not
392
+ comprehensive. The purpose of this list is to provide contextual information
393
+ about the possible use-cases that the model creators considered as part of model
394
+ training and development.
395
+
396
+ * Content Creation and Communication
397
+ * Text Generation: These models can be used to generate creative text formats
398
+ such as poems, scripts, code, marketing copy, and email drafts.
399
+ * Chatbots and Conversational AI: Power conversational interfaces for customer
400
+ service, virtual assistants, or interactive applications.
401
+ * Text Summarization: Generate concise summaries of a text corpus, research
402
+ papers, or reports.
403
+ * Research and Education
404
+ * Natural Language Processing (NLP) Research: These models can serve as a
405
+ foundation for researchers to experiment with NLP techniques, develop
406
+ algorithms, and contribute to the advancement of the field.
407
+ * Language Learning Tools: Support interactive language learning experiences,
408
+ aiding in grammar correction or providing writing practice.
409
+ * Knowledge Exploration: Assist researchers in exploring large bodies of text
410
+ by generating summaries or answering questions about specific topics.
411
+
412
+ ### Limitations
413
+
414
+ * Training Data
415
+ * The quality and diversity of the training data significantly influence the
416
+ model's capabilities. Biases or gaps in the training data can lead to
417
+ limitations in the model's responses.
418
+ * The scope of the training dataset determines the subject areas the model can
419
+ handle effectively.
420
+ * Context and Task Complexity
421
+ * LLMs are better at tasks that can be framed with clear prompts and
422
+ instructions. Open-ended or highly complex tasks might be challenging.
423
+ * A model's performance can be influenced by the amount of context provided
424
+ (longer context generally leads to better outputs, up to a certain point).
425
+ * Language Ambiguity and Nuance
426
+ * Natural language is inherently complex. LLMs might struggle to grasp subtle
427
+ nuances, sarcasm, or figurative language.
428
+ * Factual Accuracy
429
+ * LLMs generate responses based on information they learned from their
430
+ training datasets, but they are not knowledge bases. They may generate
431
+ incorrect or outdated factual statements.
432
+ * Common Sense
433
+ * LLMs rely on statistical patterns in language. They might lack the ability
434
+ to apply common sense reasoning in certain situations.
435
+
436
+ ### Ethical Considerations and Risks
437
+
438
+ The development of large language models (LLMs) raises several ethical concerns.
439
+ In creating an open model, we have carefully considered the following:
440
+
441
+ * Bias and Fairness
442
+ * LLMs trained on large-scale, real-world text data can reflect socio-cultural
443
+ biases embedded in the training material. These models underwent careful
444
+ scrutiny, input data pre-processing described and posterior evaluations
445
+ reported in this card.
446
+ * Misinformation and Misuse
447
+ * LLMs can be misused to generate text that is false, misleading, or harmful.
448
+ * Guidelines are provided for responsible use with the model, see the
449
+ [Responsible Generative AI Toolkit](http://ai.google.dev/gemma/responsible).
450
+ * Transparency and Accountability:
451
+ * This model card summarizes details on the models' architecture,
452
+ capabilities, limitations, and evaluation processes.
453
+ * A responsibly developed open model offers the opportunity to share
454
+ innovation by making LLM technology accessible to developers and researchers
455
+ across the AI ecosystem.
456
+
457
+ Risks identified and mitigations:
458
+
459
+ * Perpetuation of biases: It's encouraged to perform continuous monitoring
460
+ (using evaluation metrics, human review) and the exploration of de-biasing
461
+ techniques during model training, fine-tuning, and other use cases.
462
+ * Generation of harmful content: Mechanisms and guidelines for content safety
463
+ are essential. Developers are encouraged to exercise caution and implement
464
+ appropriate content safety safeguards based on their specific product policies
465
+ and application use cases.
466
+ * Misuse for malicious purposes: Technical limitations and developer and
467
+ end-user education can help mitigate against malicious applications of LLMs.
468
+ Educational resources and reporting mechanisms for users to flag misuse are
469
+ provided. Prohibited uses of Gemma models are outlined in the
470
+ [Gemma Prohibited Use Policy](https://ai.google.dev/gemma/prohibited_use_policy).
471
+ * Privacy violations: Models were trained on data filtered for removal of PII
472
+ (Personally Identifiable Information). Developers are encouraged to adhere to
473
+ privacy regulations with privacy-preserving techniques.
474
+
475
+ ### Benefits
476
+
477
+ At the time of release, this family of models provides high-performance open
478
+ large language model implementations designed from the ground up for Responsible
479
+ AI development compared to similarly sized models.
480
+
481
+ Using the benchmark evaluation metrics described in this document, these models
482
+ have shown to provide superior performance to other, comparably-sized open model
483
+ alternatives.
484
+
485
+
486
+