File size: 10,642 Bytes
ec7b953 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
medicine-Llama3-8B - GGUF
- Model creator: https://huggingface.co/instruction-pretrain/
- Original model: https://huggingface.co/instruction-pretrain/medicine-Llama3-8B/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [medicine-Llama3-8B.Q2_K.gguf](https://huggingface.co/RichardErkhov/instruction-pretrain_-_medicine-Llama3-8B-gguf/blob/main/medicine-Llama3-8B.Q2_K.gguf) | Q2_K | 2.96GB |
| [medicine-Llama3-8B.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/instruction-pretrain_-_medicine-Llama3-8B-gguf/blob/main/medicine-Llama3-8B.IQ3_XS.gguf) | IQ3_XS | 3.28GB |
| [medicine-Llama3-8B.IQ3_S.gguf](https://huggingface.co/RichardErkhov/instruction-pretrain_-_medicine-Llama3-8B-gguf/blob/main/medicine-Llama3-8B.IQ3_S.gguf) | IQ3_S | 3.43GB |
| [medicine-Llama3-8B.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/instruction-pretrain_-_medicine-Llama3-8B-gguf/blob/main/medicine-Llama3-8B.Q3_K_S.gguf) | Q3_K_S | 3.41GB |
| [medicine-Llama3-8B.IQ3_M.gguf](https://huggingface.co/RichardErkhov/instruction-pretrain_-_medicine-Llama3-8B-gguf/blob/main/medicine-Llama3-8B.IQ3_M.gguf) | IQ3_M | 3.52GB |
| [medicine-Llama3-8B.Q3_K.gguf](https://huggingface.co/RichardErkhov/instruction-pretrain_-_medicine-Llama3-8B-gguf/blob/main/medicine-Llama3-8B.Q3_K.gguf) | Q3_K | 3.74GB |
| [medicine-Llama3-8B.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/instruction-pretrain_-_medicine-Llama3-8B-gguf/blob/main/medicine-Llama3-8B.Q3_K_M.gguf) | Q3_K_M | 3.74GB |
| [medicine-Llama3-8B.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/instruction-pretrain_-_medicine-Llama3-8B-gguf/blob/main/medicine-Llama3-8B.Q3_K_L.gguf) | Q3_K_L | 4.03GB |
| [medicine-Llama3-8B.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/instruction-pretrain_-_medicine-Llama3-8B-gguf/blob/main/medicine-Llama3-8B.IQ4_XS.gguf) | IQ4_XS | 4.18GB |
| [medicine-Llama3-8B.Q4_0.gguf](https://huggingface.co/RichardErkhov/instruction-pretrain_-_medicine-Llama3-8B-gguf/blob/main/medicine-Llama3-8B.Q4_0.gguf) | Q4_0 | 4.34GB |
| [medicine-Llama3-8B.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/instruction-pretrain_-_medicine-Llama3-8B-gguf/blob/main/medicine-Llama3-8B.IQ4_NL.gguf) | IQ4_NL | 4.38GB |
| [medicine-Llama3-8B.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/instruction-pretrain_-_medicine-Llama3-8B-gguf/blob/main/medicine-Llama3-8B.Q4_K_S.gguf) | Q4_K_S | 4.37GB |
| [medicine-Llama3-8B.Q4_K.gguf](https://huggingface.co/RichardErkhov/instruction-pretrain_-_medicine-Llama3-8B-gguf/blob/main/medicine-Llama3-8B.Q4_K.gguf) | Q4_K | 4.58GB |
| [medicine-Llama3-8B.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/instruction-pretrain_-_medicine-Llama3-8B-gguf/blob/main/medicine-Llama3-8B.Q4_K_M.gguf) | Q4_K_M | 4.58GB |
| [medicine-Llama3-8B.Q4_1.gguf](https://huggingface.co/RichardErkhov/instruction-pretrain_-_medicine-Llama3-8B-gguf/blob/main/medicine-Llama3-8B.Q4_1.gguf) | Q4_1 | 4.78GB |
| [medicine-Llama3-8B.Q5_0.gguf](https://huggingface.co/RichardErkhov/instruction-pretrain_-_medicine-Llama3-8B-gguf/blob/main/medicine-Llama3-8B.Q5_0.gguf) | Q5_0 | 5.21GB |
| [medicine-Llama3-8B.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/instruction-pretrain_-_medicine-Llama3-8B-gguf/blob/main/medicine-Llama3-8B.Q5_K_S.gguf) | Q5_K_S | 5.21GB |
| [medicine-Llama3-8B.Q5_K.gguf](https://huggingface.co/RichardErkhov/instruction-pretrain_-_medicine-Llama3-8B-gguf/blob/main/medicine-Llama3-8B.Q5_K.gguf) | Q5_K | 5.34GB |
| [medicine-Llama3-8B.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/instruction-pretrain_-_medicine-Llama3-8B-gguf/blob/main/medicine-Llama3-8B.Q5_K_M.gguf) | Q5_K_M | 5.34GB |
| [medicine-Llama3-8B.Q5_1.gguf](https://huggingface.co/RichardErkhov/instruction-pretrain_-_medicine-Llama3-8B-gguf/blob/main/medicine-Llama3-8B.Q5_1.gguf) | Q5_1 | 5.65GB |
| [medicine-Llama3-8B.Q6_K.gguf](https://huggingface.co/RichardErkhov/instruction-pretrain_-_medicine-Llama3-8B-gguf/blob/main/medicine-Llama3-8B.Q6_K.gguf) | Q6_K | 6.14GB |
| [medicine-Llama3-8B.Q8_0.gguf](https://huggingface.co/RichardErkhov/instruction-pretrain_-_medicine-Llama3-8B-gguf/blob/main/medicine-Llama3-8B.Q8_0.gguf) | Q8_0 | 7.95GB |
Original model description:
---
datasets:
- instruction-pretrain/medicine-instruction-augmented-corpora
- Open-Orca/OpenOrca
- EleutherAI/pile
- GAIR/lima
- WizardLM/WizardLM_evol_instruct_V2_196k
language:
- en
license: llama3
tags:
- biology
- medical
---
# Instruction Pre-Training: Language Models are Supervised Multitask Learners
This repo contains the **biomedicine model developed from Llama3-8B** in our paper [Instruction Pre-Training: Language Models are Supervised Multitask Learners](https://huggingface.co/papers/2406.14491).
We explore supervised multitask pre-training by proposing ***Instruction Pre-Training***, a framework that scalably augments massive raw corpora with instruction-response pairs to pre-train language models. The instruction-response pairs are generated by an efficient instruction synthesizer built on open-source models. ***Instruction Pre-Training* outperforms *Vanilla Pre-training* in both general pre-training from scratch and domain-adaptive continual pre-training.** In pre-training from scratch, *Instruction Pre-Training* not only improves pre-trained base models but also benefits more from further instruction tuning. **In continual pre-training, *Instruction Pre-Training* enables Llama3-8B to be comparable to or even outperform Llama3-70B.**
<p align='center'>
<img src="/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F66711d2ee12fa6cc5f5dfc89%2FvRdsFIVQptbNaGiZ18Lih.png%26quot%3B%3C%2Fspan%3E width="400">
</p>
**************************** **Updates** ****************************
* 2024/7/31: Updated pre-training suggestions in the `Advanced Usage` section of [instruction-synthesizer](https://huggingface.co/instruction-pretrain/instruction-synthesizer)
* 2024/7/15: We scaled up the pre-trained tokens from 100B to 250B, with the number of synthesized instruction-response pairs reaching 500M! Below, we show the performance trend on downstream tasks throughout the pre-training process:
<p align='left'>
<img src="/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F66711d2ee12fa6cc5f5dfc89%2F0okCfRkC6uALTfuNxt0Fa.png%26quot%3B%3C%2Fspan%3E width="500">
</p>
* 2024/6/21: Released the [paper](https://huggingface.co/papers/2406.14491), [code](https://github.com/microsoft/LMOps), and [resources](https://huggingface.co/instruction-pretrain)
## Resources
**🤗 We share our data and models with example usages, feel free to open any discussions at [this page](https://huggingface.co/papers/2406.14491)! 🤗**
- Thanks to the demo [davanstrien/instruction-synthesizer](https://huggingface.co/spaces/davanstrien/instruction-synthesizer) for implementing our approach
- Context-Based Instruction Synthesizer: [instruction-synthesizer](https://huggingface.co/instruction-pretrain/instruction-synthesizer)
- Fine-Tuning Data for the Synthesizer: [ft-instruction-synthesizer-collection](https://huggingface.co/datasets/instruction-pretrain/ft-instruction-synthesizer-collection)
- General Models Pre-Trained from Scratch (on 100B tokes):
- [InstructLM-500M](https://huggingface.co/instruction-pretrain/InstructLM-500M)
- [InstructLM-1.3B](https://huggingface.co/instruction-pretrain/InstructLM-1.3B)
- Domain-Specific Models Pre-Trained from Llama3-8B:
- [Finance-Llama3-8B](https://huggingface.co/instruction-pretrain/finance-Llama3-8B)
- [Biomedicine-Llama3-8B](https://huggingface.co/instruction-pretrain/medicine-Llama3-8B)
- General Instruction-Augmented Corpora: [general-instruction-augmented-corpora](https://huggingface.co/datasets/instruction-pretrain/general-instruction-augmented-corpora)
- Domain-Specific Instruction-Augmented Corpora (no finance data to avoid ethical issues): [medicine-instruction-augmented-corpora](https://huggingface.co/datasets/instruction-pretrain/medicine-instruction-augmented-corpora)
## Domain-Adaptive Continued Pre-Training
Following [AdaptLLM](https://huggingface.co/AdaptLLM/medicine-chat), we augment the domain-specific raw corpora with instruction-response pairs generated by our [context-based instruction synthesizer](https://huggingface.co/instruction-pretrain/instruction-synthesizer).
### 1. To chat with the biomedicine-Llama3-8B model:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("instruction-pretrain/medicine-Llama3-8B")
tokenizer = AutoTokenizer.from_pretrained("instruction-pretrain/medicine-Llama3-8B")
# Put your input here, NO prompt template is required
user_input = '''Question: Which of the following is an example of monosomy?
Options:
- 46,XX
- 47,XXX
- 69,XYY
- 45,X
Please provide your choice first and then provide explanations if possible.'''
inputs = tokenizer(user_input, return_tensors="pt", add_special_tokens=True).input_ids.to(model.device)
outputs = model.generate(input_ids=inputs, max_new_tokens=400)[0]
answer_start = int(inputs.shape[-1])
pred = tokenizer.decode(outputs[answer_start:], skip_special_tokens=True)
print(pred)
```
### 2. To evaluate our models on the domain-specific tasks
1. Setup dependencies
```bash
git clone https://github.com/microsoft/LMOps
cd LMOps/adaptllm
pip install -r requirements.txt
```
2. Evaluate
```bash
DOMAIN='biomedicine'
# if the model can fit on a single GPU: set MODEL_PARALLEL=False
# elif the model is too large to fit on a single GPU: set MODEL_PARALLEL=True
MODEL_PARALLEL=False
# number of GPUs, chosen from [1,2,4,8]
N_GPU=1
# Set as True
add_bos_token=True
bash scripts/inference.sh ${DOMAIN} 'instruction-pretrain/medicine-Llama3-8B' ${add_bos_token} ${MODEL_PARALLEL} ${N_GPU}
```
## Citation
If you find our work helpful, please cite us:
Instruction Pre-Training
```bibtex
@article{cheng2024instruction,
title={Instruction Pre-Training: Language Models are Supervised Multitask Learners},
author={Cheng, Daixuan and Gu, Yuxian and Huang, Shaohan and Bi, Junyu and Huang, Minlie and Wei, Furu},
journal={arXiv preprint arXiv:2406.14491},
year={2024}
}
```
[Adapt LLM to Domains](https://huggingface.co/papers/2309.09530)
```bibtex
@inproceedings{
cheng2024adapting,
title={Adapting Large Language Models via Reading Comprehension},
author={Daixuan Cheng and Shaohan Huang and Furu Wei},
booktitle={The Twelfth International Conference on Learning Representations},
year={2024},
url={https://openreview.net/forum?id=y886UXPEZ0}
}
```
|