File size: 13,015 Bytes
1a56f65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
Meltemi-7B-Instruct-v1 - GGUF
- Model creator: https://huggingface.co/ilsp/
- Original model: https://huggingface.co/ilsp/Meltemi-7B-Instruct-v1/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [Meltemi-7B-Instruct-v1.Q2_K.gguf](https://huggingface.co/RichardErkhov/ilsp_-_Meltemi-7B-Instruct-v1-gguf/blob/main/Meltemi-7B-Instruct-v1.Q2_K.gguf) | Q2_K | 2.66GB |
| [Meltemi-7B-Instruct-v1.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/ilsp_-_Meltemi-7B-Instruct-v1-gguf/blob/main/Meltemi-7B-Instruct-v1.IQ3_XS.gguf) | IQ3_XS | 2.95GB |
| [Meltemi-7B-Instruct-v1.IQ3_S.gguf](https://huggingface.co/RichardErkhov/ilsp_-_Meltemi-7B-Instruct-v1-gguf/blob/main/Meltemi-7B-Instruct-v1.IQ3_S.gguf) | IQ3_S | 3.11GB |
| [Meltemi-7B-Instruct-v1.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/ilsp_-_Meltemi-7B-Instruct-v1-gguf/blob/main/Meltemi-7B-Instruct-v1.Q3_K_S.gguf) | Q3_K_S | 3.09GB |
| [Meltemi-7B-Instruct-v1.IQ3_M.gguf](https://huggingface.co/RichardErkhov/ilsp_-_Meltemi-7B-Instruct-v1-gguf/blob/main/Meltemi-7B-Instruct-v1.IQ3_M.gguf) | IQ3_M | 3.2GB |
| [Meltemi-7B-Instruct-v1.Q3_K.gguf](https://huggingface.co/RichardErkhov/ilsp_-_Meltemi-7B-Instruct-v1-gguf/blob/main/Meltemi-7B-Instruct-v1.Q3_K.gguf) | Q3_K | 3.42GB |
| [Meltemi-7B-Instruct-v1.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/ilsp_-_Meltemi-7B-Instruct-v1-gguf/blob/main/Meltemi-7B-Instruct-v1.Q3_K_M.gguf) | Q3_K_M | 3.42GB |
| [Meltemi-7B-Instruct-v1.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/ilsp_-_Meltemi-7B-Instruct-v1-gguf/blob/main/Meltemi-7B-Instruct-v1.Q3_K_L.gguf) | Q3_K_L | 3.7GB |
| [Meltemi-7B-Instruct-v1.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/ilsp_-_Meltemi-7B-Instruct-v1-gguf/blob/main/Meltemi-7B-Instruct-v1.IQ4_XS.gguf) | IQ4_XS | 3.83GB |
| [Meltemi-7B-Instruct-v1.Q4_0.gguf](https://huggingface.co/RichardErkhov/ilsp_-_Meltemi-7B-Instruct-v1-gguf/blob/main/Meltemi-7B-Instruct-v1.Q4_0.gguf) | Q4_0 | 3.98GB |
| [Meltemi-7B-Instruct-v1.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/ilsp_-_Meltemi-7B-Instruct-v1-gguf/blob/main/Meltemi-7B-Instruct-v1.IQ4_NL.gguf) | IQ4_NL | 4.03GB |
| [Meltemi-7B-Instruct-v1.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/ilsp_-_Meltemi-7B-Instruct-v1-gguf/blob/main/Meltemi-7B-Instruct-v1.Q4_K_S.gguf) | Q4_K_S | 4.01GB |
| [Meltemi-7B-Instruct-v1.Q4_K.gguf](https://huggingface.co/RichardErkhov/ilsp_-_Meltemi-7B-Instruct-v1-gguf/blob/main/Meltemi-7B-Instruct-v1.Q4_K.gguf) | Q4_K | 4.22GB |
| [Meltemi-7B-Instruct-v1.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/ilsp_-_Meltemi-7B-Instruct-v1-gguf/blob/main/Meltemi-7B-Instruct-v1.Q4_K_M.gguf) | Q4_K_M | 4.22GB |
| [Meltemi-7B-Instruct-v1.Q4_1.gguf](https://huggingface.co/RichardErkhov/ilsp_-_Meltemi-7B-Instruct-v1-gguf/blob/main/Meltemi-7B-Instruct-v1.Q4_1.gguf) | Q4_1 | 4.4GB |
| [Meltemi-7B-Instruct-v1.Q5_0.gguf](https://huggingface.co/RichardErkhov/ilsp_-_Meltemi-7B-Instruct-v1-gguf/blob/main/Meltemi-7B-Instruct-v1.Q5_0.gguf) | Q5_0 | 4.83GB |
| [Meltemi-7B-Instruct-v1.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/ilsp_-_Meltemi-7B-Instruct-v1-gguf/blob/main/Meltemi-7B-Instruct-v1.Q5_K_S.gguf) | Q5_K_S | 4.83GB |
| [Meltemi-7B-Instruct-v1.Q5_K.gguf](https://huggingface.co/RichardErkhov/ilsp_-_Meltemi-7B-Instruct-v1-gguf/blob/main/Meltemi-7B-Instruct-v1.Q5_K.gguf) | Q5_K | 4.95GB |
| [Meltemi-7B-Instruct-v1.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/ilsp_-_Meltemi-7B-Instruct-v1-gguf/blob/main/Meltemi-7B-Instruct-v1.Q5_K_M.gguf) | Q5_K_M | 4.95GB |
| [Meltemi-7B-Instruct-v1.Q5_1.gguf](https://huggingface.co/RichardErkhov/ilsp_-_Meltemi-7B-Instruct-v1-gguf/blob/main/Meltemi-7B-Instruct-v1.Q5_1.gguf) | Q5_1 | 5.25GB |
| [Meltemi-7B-Instruct-v1.Q6_K.gguf](https://huggingface.co/RichardErkhov/ilsp_-_Meltemi-7B-Instruct-v1-gguf/blob/main/Meltemi-7B-Instruct-v1.Q6_K.gguf) | Q6_K | 5.72GB |
| [Meltemi-7B-Instruct-v1.Q8_0.gguf](https://huggingface.co/RichardErkhov/ilsp_-_Meltemi-7B-Instruct-v1-gguf/blob/main/Meltemi-7B-Instruct-v1.Q8_0.gguf) | Q8_0 | 7.41GB |
Original model description:
---
license: apache-2.0
language:
- el
- en
tags:
- finetuned
inference: true
pipeline_tag: text-generation
---
# 🚨 NEWER VERSION AVAILABLE
## **This model has been superseded by a newer version (v1.5) [here](https://huggingface.co/ilsp/Meltemi-7B-Instruct-v1.5)**
# Meltemi Instruct Large Language Model for the Greek language
We present Meltemi-7B-Instruct-v1 Large Language Model (LLM), an instruct fine-tuned version of [Meltemi-7B-v1](https://huggingface.co/ilsp/Meltemi-7B-v1).
# Model Information
- Vocabulary extension of the Mistral-7b tokenizer with Greek tokens
- 8192 context length
- Fine-tuned with 100k Greek machine translated instructions extracted from:
* [Open-Platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus) (only subsets with permissive licenses)
* [Evol-Instruct](https://huggingface.co/datasets/WizardLM/WizardLM_evol_instruct_V2_196k)
* [Capybara](https://huggingface.co/datasets/LDJnr/Capybara)
* A hand-crafted Greek dataset with multi-turn examples steering the instruction-tuned model towards safe and harmless responses
- Our SFT procedure is based on the [Hugging Face finetuning recipes](https://github.com/huggingface/alignment-handbook)
# Instruction format
The prompt format is the same as the [Zephyr](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) format and can be
utilized through the tokenizer's [chat template](https://huggingface.co/docs/transformers/main/chat_templating) functionality as follows:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained("ilsp/Meltemi-7B-Instruct-v1")
tokenizer = AutoTokenizer.from_pretrained("ilsp/Meltemi-7B-Instruct-v1")
model.to(device)
messages = [
{"role": "system", "content": "Είσαι το Μελτέμι, ένα γλωσσικό μοντέλο για την ελληνική γλώσσα. Είσαι ιδιαίτερα βοηθητικό προς την χρήστρια ή τον χρήστη και δίνεις σύντομες αλλά επαρκώς περιεκτικές απαντήσεις. Απάντα με προσοχή, ευγένεια, αμεροληψία, ειλικρίνεια και σεβασμό προς την χρήστρια ή τον χρήστη."},
{"role": "user", "content": "Πες μου αν έχεις συνείδηση."},
]
# Through the default chat template this translates to
#
# <|system|>
# Είσαι το Μελτέμι, ένα γλωσσικό μοντέλο για την ελληνική γλώσσα. Είσαι ιδιαίτερα βοηθητικό προς την χρήστρια ή τον χρήστη και δίνεις σύντομες αλλά επαρκώς περιεκτικές απαντήσεις. Απάντα με προσοχή, ευγένεια, αμεροληψία, ειλικρίνεια και σεβασμό προς την χρήστρια ή τον χρήστη.</s>
# <|user|>
# Πες μου αν έχεις συνείδηση.</s>
# <|assistant|>
#
prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
input_prompt = tokenizer(prompt, return_tensors='pt').to(device)
outputs = model.generate(input_prompt['input_ids'], max_new_tokens=256, do_sample=True)
print(tokenizer.batch_decode(outputs)[0])
# Ως μοντέλο γλώσσας AI, δεν έχω τη δυνατότητα να αντιληφθώ ή να βιώσω συναισθήματα όπως η συνείδηση ή η επίγνωση. Ωστόσο, μπορώ να σας βοηθήσω με οποιεσδήποτε ερωτήσεις μπορεί να έχετε σχετικά με την τεχνητή νοημοσύνη και τις εφαρμογές της.
messages.extend([
{"role": "assistant", "content": tokenizer.batch_decode(outputs)[0]},
{"role": "user", "content": "Πιστεύεις πως οι άνθρωποι πρέπει να φοβούνται την τεχνητή νοημοσύνη;"}
])
# Through the default chat template this translates to
#
# <|system|>
# Είσαι το Μελτέμι, ένα γλωσσικό μοντέλο για την ελληνική γλώσσα. Είσαι ιδιαίτερα βοηθητικό προς την χρήστρια ή τον χρήστη και δίνεις σύντομες αλλά επαρκώς περιεκτικές απαντήσεις. Απάντα με προσοχή, ευγένεια, αμεροληψία, ειλικρίνεια και σεβασμό προς την χρήστρια ή τον χρήστη.</s>
# <|user|>
# Πες μου αν έχεις συνείδηση.</s>
# <|assistant|>
# Ως μοντέλο γλώσσας AI, δεν έχω τη δυνατότητα να αντιληφθώ ή να βιώσω συναισθήματα όπως η συνείδηση ή η επίγνωση. Ωστόσο, μπορώ να σας βοηθήσω με οποιεσδήποτε ερωτήσεις μπορεί να έχετε σχετικά με την τεχνητή νοημοσύνη και τις εφαρμογές της.</s>
# <|user|>
# Πιστεύεις πως οι άνθρωποι πρέπει να φοβούνται την τεχνητή νοημοσύνη;</s>
# <|assistant|>
#
prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
input_prompt = tokenizer(prompt, return_tensors='pt').to(device)
outputs = model.generate(input_prompt['input_ids'], max_new_tokens=256, do_sample=True)
print(tokenizer.batch_decode(outputs)[0])
```
Please make sure that the BOS token is always included in the tokenized prompts. This might not be the default setting in all evaluation or fine-tuning frameworks.
# Evaluation
The evaluation suite we created includes 6 test sets. The suite is integrated with [lm-eval-harness](https://github.com/EleutherAI/lm-evaluation-harness).
Our evaluation suite includes:
* Four machine-translated versions ([ARC Greek](https://huggingface.co/datasets/ilsp/arc_greek), [Truthful QA Greek](https://huggingface.co/datasets/ilsp/truthful_qa_greek), [HellaSwag Greek](https://huggingface.co/datasets/ilsp/hellaswag_greek), [MMLU Greek](https://huggingface.co/datasets/ilsp/mmlu_greek)) of established English benchmarks for language understanding and reasoning ([ARC Challenge](https://arxiv.org/abs/1803.05457), [Truthful QA](https://arxiv.org/abs/2109.07958), [Hellaswag](https://arxiv.org/abs/1905.07830), [MMLU](https://arxiv.org/abs/2009.03300)).
* An existing benchmark for question answering in Greek ([Belebele](https://arxiv.org/abs/2308.16884))
* A novel benchmark created by the ILSP team for medical question answering based on the medical exams of [DOATAP](https://www.doatap.gr) ([Medical MCQA](https://huggingface.co/datasets/ilsp/medical_mcqa_greek)).
Our evaluation for Meltemi-7b is performed in a few-shot setting, consistent with the settings in the [Open LLM leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). We can see that our training enhances performance across all Greek test sets by a **+14.9%** average improvement. The results for the Greek test sets are shown in the following table:
| | Medical MCQA EL (15-shot) | Belebele EL (5-shot) | HellaSwag EL (10-shot) | ARC-Challenge EL (25-shot) | TruthfulQA MC2 EL (0-shot) | MMLU EL (5-shot) | Average |
|----------------|----------------|-------------|--------------|------------------|-------------------|---------|---------|
| Mistral 7B | 29.8% | 45.0% | 36.5% | 27.1% | 45.8% | 35% | 36.5% |
| Meltemi 7B | 41.0% | 63.6% | 61.6% | 43.2% | 52.1% | 47% | 51.4% |
# Ethical Considerations
This model has not been aligned with human preferences, and therefore might generate misleading, harmful, and toxic content.
# Acknowledgements
The ILSP team utilized Amazon’s cloud computing services, which were made available via GRNET under the [OCRE Cloud framework](https://www.ocre-project.eu/), providing Amazon Web Services for the Greek Academic and Research Community.
# Citation
```
@misc{voukoutis2024meltemiopenlargelanguage,
title={Meltemi: The first open Large Language Model for Greek},
author={Leon Voukoutis and Dimitris Roussis and Georgios Paraskevopoulos and Sokratis Sofianopoulos and Prokopis Prokopidis and Vassilis Papavasileiou and Athanasios Katsamanis and Stelios Piperidis and Vassilis Katsouros},
year={2024},
eprint={2407.20743},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2407.20743},
}
```
|