Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) multimaster-7b - GGUF - Model creator: https://huggingface.co/ibivibiv/ - Original model: https://huggingface.co/ibivibiv/multimaster-7b/ | Name | Quant method | Size | | ---- | ---- | ---- | | [multimaster-7b.Q2_K.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_multimaster-7b-gguf/blob/main/multimaster-7b.Q2_K.gguf) | Q2_K | 2.53GB | | [multimaster-7b.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_multimaster-7b-gguf/blob/main/multimaster-7b.IQ3_XS.gguf) | IQ3_XS | 2.81GB | | [multimaster-7b.IQ3_S.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_multimaster-7b-gguf/blob/main/multimaster-7b.IQ3_S.gguf) | IQ3_S | 2.96GB | | [multimaster-7b.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_multimaster-7b-gguf/blob/main/multimaster-7b.Q3_K_S.gguf) | Q3_K_S | 2.95GB | | [multimaster-7b.IQ3_M.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_multimaster-7b-gguf/blob/main/multimaster-7b.IQ3_M.gguf) | IQ3_M | 3.06GB | | [multimaster-7b.Q3_K.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_multimaster-7b-gguf/blob/main/multimaster-7b.Q3_K.gguf) | Q3_K | 3.28GB | | [multimaster-7b.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_multimaster-7b-gguf/blob/main/multimaster-7b.Q3_K_M.gguf) | Q3_K_M | 3.28GB | | [multimaster-7b.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_multimaster-7b-gguf/blob/main/multimaster-7b.Q3_K_L.gguf) | Q3_K_L | 3.56GB | | [multimaster-7b.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_multimaster-7b-gguf/blob/main/multimaster-7b.IQ4_XS.gguf) | IQ4_XS | 3.67GB | | [multimaster-7b.Q4_0.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_multimaster-7b-gguf/blob/main/multimaster-7b.Q4_0.gguf) | Q4_0 | 3.83GB | | [multimaster-7b.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_multimaster-7b-gguf/blob/main/multimaster-7b.IQ4_NL.gguf) | IQ4_NL | 3.87GB | | [multimaster-7b.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_multimaster-7b-gguf/blob/main/multimaster-7b.Q4_K_S.gguf) | Q4_K_S | 3.86GB | | [multimaster-7b.Q4_K.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_multimaster-7b-gguf/blob/main/multimaster-7b.Q4_K.gguf) | Q4_K | 4.07GB | | [multimaster-7b.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_multimaster-7b-gguf/blob/main/multimaster-7b.Q4_K_M.gguf) | Q4_K_M | 4.07GB | | [multimaster-7b.Q4_1.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_multimaster-7b-gguf/blob/main/multimaster-7b.Q4_1.gguf) | Q4_1 | 4.24GB | | [multimaster-7b.Q5_0.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_multimaster-7b-gguf/blob/main/multimaster-7b.Q5_0.gguf) | Q5_0 | 4.65GB | | [multimaster-7b.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_multimaster-7b-gguf/blob/main/multimaster-7b.Q5_K_S.gguf) | Q5_K_S | 4.65GB | | [multimaster-7b.Q5_K.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_multimaster-7b-gguf/blob/main/multimaster-7b.Q5_K.gguf) | Q5_K | 4.78GB | | [multimaster-7b.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_multimaster-7b-gguf/blob/main/multimaster-7b.Q5_K_M.gguf) | Q5_K_M | 4.78GB | | [multimaster-7b.Q5_1.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_multimaster-7b-gguf/blob/main/multimaster-7b.Q5_1.gguf) | Q5_1 | 5.07GB | | [multimaster-7b.Q6_K.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_multimaster-7b-gguf/blob/main/multimaster-7b.Q6_K.gguf) | Q6_K | 5.53GB | | [multimaster-7b.Q8_0.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_multimaster-7b-gguf/blob/main/multimaster-7b.Q8_0.gguf) | Q8_0 | 7.17GB | Original model description: --- license: apache-2.0 language: - en library_name: transformers tags: - moe - moerge --- # Multi Master 7B ![img](./multimaster.png) A quick multi-disciplinary fine tune of openchat/openchat-3.5-0106 using an alpaca-style dataset across different disciplines. I used LORA adapters that I then merged back into the main model for ease of use. # Prompting ## Prompt Template for alpaca style ``` ### Instruction: (without the <>) ### Response: ``` ## Sample Code ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer torch.set_default_device("cuda") model = AutoModelForCausalLM.from_pretrained("ibivibiv/multimaster-7b", torch_dtype="auto", device_config='auto') tokenizer = AutoTokenizer.from_pretrained("ibivibiv/multimaster-7b") inputs = tokenizer("### Instruction: Who would when in an arm wrestling match between Abraham Lincoln and Chuck Norris?\nA. Abraham Lincoln \nB. Chuck Norris\n### Response:\n", return_tensors="pt", return_attention_mask=False) outputs = model.generate(**inputs, max_length=200) text = tokenizer.batch_decode(outputs)[0] print(text) ``` # Model Details * **Trained by**: [ibivibiv](https://huggingface.co/ibivibiv) * **Library**: [HuggingFace Transformers](https://github.com/huggingface/transformers) * **Model type:** **multimaster-7b** is a lora tuned version of openchat/openchat-3.5-0106 with the adapter merged back into the main model * **Language(s)**: English * **Purpose**: This model is a focus on multi-disciplinary model tuning # Benchmark Scores coming soon ## Citations ``` @misc{open-llm-leaderboard, author = {Edward Beeching and Clémentine Fourrier and Nathan Habib and Sheon Han and Nathan Lambert and Nazneen Rajani and Omar Sanseviero and Lewis Tunstall and Thomas Wolf}, title = {Open LLM Leaderboard}, year = {2023}, publisher = {Hugging Face}, howpublished = "\url{https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard}" } ``` ``` @software{eval-harness, author = {Gao, Leo and Tow, Jonathan and Biderman, Stella and Black, Sid and DiPofi, Anthony and Foster, Charles and Golding, Laurence and Hsu, Jeffrey and McDonell, Kyle and Muennighoff, Niklas and Phang, Jason and Reynolds, Laria and Tang, Eric and Thite, Anish and Wang, Ben and Wang, Kevin and Zou, Andy}, title = {A framework for few-shot language model evaluation}, month = sep, year = 2021, publisher = {Zenodo}, version = {v0.0.1}, doi = {10.5281/zenodo.5371628}, url = {https://doi.org/10.5281/zenodo.5371628} } ``` ``` @misc{clark2018think, title={Think you have Solved Question Answering? Try ARC, the AI2 Reasoning Challenge}, author={Peter Clark and Isaac Cowhey and Oren Etzioni and Tushar Khot and Ashish Sabharwal and Carissa Schoenick and Oyvind Tafjord}, year={2018}, eprint={1803.05457}, archivePrefix={arXiv}, primaryClass={cs.AI} } ``` ``` @misc{zellers2019hellaswag, title={HellaSwag: Can a Machine Really Finish Your Sentence?}, author={Rowan Zellers and Ari Holtzman and Yonatan Bisk and Ali Farhadi and Yejin Choi}, year={2019}, eprint={1905.07830}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ``` @misc{hendrycks2021measuring, title={Measuring Massive Multitask Language Understanding}, author={Dan Hendrycks and Collin Burns and Steven Basart and Andy Zou and Mantas Mazeika and Dawn Song and Jacob Steinhardt}, year={2021}, eprint={2009.03300}, archivePrefix={arXiv}, primaryClass={cs.CY} } ``` ``` @misc{lin2022truthfulqa, title={TruthfulQA: Measuring How Models Mimic Human Falsehoods}, author={Stephanie Lin and Jacob Hilton and Owain Evans}, year={2022}, eprint={2109.07958}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ``` @misc{DBLP:journals/corr/abs-1907-10641, title={{WINOGRANDE:} An Adversarial Winograd Schema Challenge at Scale}, author={Keisuke Sakaguchi and Ronan Le Bras and Chandra Bhagavatula and Yejin Choi}, year={2019}, eprint={1907.10641}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ``` @misc{DBLP:journals/corr/abs-2110-14168, title={Training Verifiers to Solve Math Word Problems}, author={Karl Cobbe and Vineet Kosaraju and Mohammad Bavarian and Mark Chen and Heewoo Jun and Lukasz Kaiser and Matthias Plappert and Jerry Tworek and Jacob Hilton and Reiichiro Nakano and Christopher Hesse and John Schulman}, year={2021}, eprint={2110.14168}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```