RichardErkhov
commited on
uploaded readme
Browse files
README.md
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Quantization made by Richard Erkhov.
|
2 |
+
|
3 |
+
[Github](https://github.com/RichardErkhov)
|
4 |
+
|
5 |
+
[Discord](https://discord.gg/pvy7H8DZMG)
|
6 |
+
|
7 |
+
[Request more models](https://github.com/RichardErkhov/quant_request)
|
8 |
+
|
9 |
+
|
10 |
+
Tess-10.7B-v2.0 - GGUF
|
11 |
+
- Model creator: https://huggingface.co/Joseph717171/
|
12 |
+
- Original model: https://huggingface.co/Joseph717171/Tess-10.7B-v2.0/
|
13 |
+
|
14 |
+
|
15 |
+
| Name | Quant method | Size |
|
16 |
+
| ---- | ---- | ---- |
|
17 |
+
| [Tess-10.7B-v2.0.Q2_K.gguf](https://huggingface.co/RichardErkhov/Joseph717171_-_Tess-10.7B-v2.0-gguf/blob/main/Tess-10.7B-v2.0.Q2_K.gguf) | Q2_K | 3.73GB |
|
18 |
+
| [Tess-10.7B-v2.0.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/Joseph717171_-_Tess-10.7B-v2.0-gguf/blob/main/Tess-10.7B-v2.0.IQ3_XS.gguf) | IQ3_XS | 4.14GB |
|
19 |
+
| [Tess-10.7B-v2.0.IQ3_S.gguf](https://huggingface.co/RichardErkhov/Joseph717171_-_Tess-10.7B-v2.0-gguf/blob/main/Tess-10.7B-v2.0.IQ3_S.gguf) | IQ3_S | 4.37GB |
|
20 |
+
| [Tess-10.7B-v2.0.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Joseph717171_-_Tess-10.7B-v2.0-gguf/blob/main/Tess-10.7B-v2.0.Q3_K_S.gguf) | Q3_K_S | 4.34GB |
|
21 |
+
| [Tess-10.7B-v2.0.IQ3_M.gguf](https://huggingface.co/RichardErkhov/Joseph717171_-_Tess-10.7B-v2.0-gguf/blob/main/Tess-10.7B-v2.0.IQ3_M.gguf) | IQ3_M | 4.51GB |
|
22 |
+
| [Tess-10.7B-v2.0.Q3_K.gguf](https://huggingface.co/RichardErkhov/Joseph717171_-_Tess-10.7B-v2.0-gguf/blob/main/Tess-10.7B-v2.0.Q3_K.gguf) | Q3_K | 4.84GB |
|
23 |
+
| [Tess-10.7B-v2.0.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Joseph717171_-_Tess-10.7B-v2.0-gguf/blob/main/Tess-10.7B-v2.0.Q3_K_M.gguf) | Q3_K_M | 4.84GB |
|
24 |
+
| [Tess-10.7B-v2.0.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Joseph717171_-_Tess-10.7B-v2.0-gguf/blob/main/Tess-10.7B-v2.0.Q3_K_L.gguf) | Q3_K_L | 5.26GB |
|
25 |
+
| [Tess-10.7B-v2.0.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Joseph717171_-_Tess-10.7B-v2.0-gguf/blob/main/Tess-10.7B-v2.0.IQ4_XS.gguf) | IQ4_XS | 5.43GB |
|
26 |
+
| [Tess-10.7B-v2.0.Q4_0.gguf](https://huggingface.co/RichardErkhov/Joseph717171_-_Tess-10.7B-v2.0-gguf/blob/main/Tess-10.7B-v2.0.Q4_0.gguf) | Q4_0 | 5.66GB |
|
27 |
+
| [Tess-10.7B-v2.0.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Joseph717171_-_Tess-10.7B-v2.0-gguf/blob/main/Tess-10.7B-v2.0.IQ4_NL.gguf) | IQ4_NL | 5.72GB |
|
28 |
+
| [Tess-10.7B-v2.0.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Joseph717171_-_Tess-10.7B-v2.0-gguf/blob/main/Tess-10.7B-v2.0.Q4_K_S.gguf) | Q4_K_S | 5.7GB |
|
29 |
+
| [Tess-10.7B-v2.0.Q4_K.gguf](https://huggingface.co/RichardErkhov/Joseph717171_-_Tess-10.7B-v2.0-gguf/blob/main/Tess-10.7B-v2.0.Q4_K.gguf) | Q4_K | 6.02GB |
|
30 |
+
| [Tess-10.7B-v2.0.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Joseph717171_-_Tess-10.7B-v2.0-gguf/blob/main/Tess-10.7B-v2.0.Q4_K_M.gguf) | Q4_K_M | 6.02GB |
|
31 |
+
| [Tess-10.7B-v2.0.Q4_1.gguf](https://huggingface.co/RichardErkhov/Joseph717171_-_Tess-10.7B-v2.0-gguf/blob/main/Tess-10.7B-v2.0.Q4_1.gguf) | Q4_1 | 6.27GB |
|
32 |
+
| [Tess-10.7B-v2.0.Q5_0.gguf](https://huggingface.co/RichardErkhov/Joseph717171_-_Tess-10.7B-v2.0-gguf/blob/main/Tess-10.7B-v2.0.Q5_0.gguf) | Q5_0 | 6.89GB |
|
33 |
+
| [Tess-10.7B-v2.0.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Joseph717171_-_Tess-10.7B-v2.0-gguf/blob/main/Tess-10.7B-v2.0.Q5_K_S.gguf) | Q5_K_S | 6.89GB |
|
34 |
+
| [Tess-10.7B-v2.0.Q5_K.gguf](https://huggingface.co/RichardErkhov/Joseph717171_-_Tess-10.7B-v2.0-gguf/blob/main/Tess-10.7B-v2.0.Q5_K.gguf) | Q5_K | 7.08GB |
|
35 |
+
| [Tess-10.7B-v2.0.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Joseph717171_-_Tess-10.7B-v2.0-gguf/blob/main/Tess-10.7B-v2.0.Q5_K_M.gguf) | Q5_K_M | 7.08GB |
|
36 |
+
| [Tess-10.7B-v2.0.Q5_1.gguf](https://huggingface.co/RichardErkhov/Joseph717171_-_Tess-10.7B-v2.0-gguf/blob/main/Tess-10.7B-v2.0.Q5_1.gguf) | Q5_1 | 7.51GB |
|
37 |
+
| [Tess-10.7B-v2.0.Q6_K.gguf](https://huggingface.co/RichardErkhov/Joseph717171_-_Tess-10.7B-v2.0-gguf/blob/main/Tess-10.7B-v2.0.Q6_K.gguf) | Q6_K | 8.2GB |
|
38 |
+
| [Tess-10.7B-v2.0.Q8_0.gguf](https://huggingface.co/RichardErkhov/Joseph717171_-_Tess-10.7B-v2.0-gguf/blob/main/Tess-10.7B-v2.0.Q8_0.gguf) | Q8_0 | 10.62GB |
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
Original model description:
|
44 |
+
---
|
45 |
+
license: apache-2.0
|
46 |
+
base_model: []
|
47 |
+
library_name: transformers
|
48 |
+
tags:
|
49 |
+
- mergekit
|
50 |
+
- merge
|
51 |
+
pipeline_tag: text-generation
|
52 |
+
---
|
53 |
+
# Credit for the model card's description goes to ddh0, mergekit, and, migtissera
|
54 |
+
# Inspired by ddh0/Starling-LM-10.7B-beta and ddh0/Mistral-10.7B-Instruct-v0.2
|
55 |
+
# Tess-10.7B-v0.2
|
56 |
+
|
57 |
+
# Deprecated
|
58 |
+
"This model is deprecated due to the use of wrong sliding window parameter while training. Will update with the new model link in a couple of days." - migtissera
|
59 |
+
|
60 |
+
This is Tess-10.7B-v0.2, a depth-upscaled version of [migtissera/Tess-7B-v2.0](https://huggingface.co/migtissera/Tess-7B-v2.0).
|
61 |
+
|
62 |
+
This model is intended to be used as a basis for further fine-tuning, or as a drop-in upgrade from the original 7 billion parameter model.
|
63 |
+
|
64 |
+
Paper detailing how Depth-Up Scaling works: [SOLAR 10.7B: Scaling Large Language Models with Simple yet Effective Depth Up-Scaling](https://arxiv.org/abs/2312.15166)
|
65 |
+
|
66 |
+
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
|
67 |
+
|
68 |
+
|
69 |
+
# Prompt format same as [migtissera/Tess-7B-v2.0](https://huggingface.co/migtissera/Tess-7B-v2.0)
|
70 |
+
|
71 |
+
# Prompt Format:
|
72 |
+
|
73 |
+
```
|
74 |
+
SYSTEM: <ANY SYSTEM CONTEXT>
|
75 |
+
USER:
|
76 |
+
ASSISTANT:
|
77 |
+
```
|
78 |
+
|
79 |
+
|
80 |
+
## Merge Details
|
81 |
+
### Merge Method
|
82 |
+
|
83 |
+
This model was merged using the passthrough merge method.
|
84 |
+
|
85 |
+
### Models Merged
|
86 |
+
|
87 |
+
The following models were included in the merge:
|
88 |
+
* /Users/jsarnecki/opt/migtissera/Tess-7B-v2.0
|
89 |
+
|
90 |
+
### Configuration
|
91 |
+
|
92 |
+
The following YAML configuration was used to produce this model:
|
93 |
+
|
94 |
+
```yaml
|
95 |
+
dtype: bfloat16
|
96 |
+
merge_method: passthrough
|
97 |
+
slices:
|
98 |
+
- sources:
|
99 |
+
- layer_range: [0, 24]
|
100 |
+
model: /Users/jsarnecki/opt/migtissera/Tess-7B-v2.0
|
101 |
+
- sources:
|
102 |
+
- layer_range: [8, 32]
|
103 |
+
model: /Users/jsarnecki/opt/migtissera/Tess-7B-v2.0
|
104 |
+
|
105 |
+
```
|
106 |
+
# GGUFs (Thanks to [bartowski](https://huggingface.co/bartowski))
|
107 |
+
|
108 |
+
https://huggingface.co/bartowski/Tess-10.7B-v2.0-GGUF
|
109 |
+
|
110 |
+
# exl2s (Thanks to [bartowski](https://huggingface.co/bartowski))
|
111 |
+
|
112 |
+
https://huggingface.co/bartowski/Tess-10.7B-v2.0-exl2
|
113 |
+
|
114 |
+
![Tesoro](https://huggingface.co/migtissera/Tess-7B-v2.0/resolve/main/Tesoro.png)
|
115 |
+
|
116 |
+
---
|
117 |
+
license: apache-2.0
|
118 |
+
---
|
119 |
+
|
120 |
+
# Tess-7B-v2.0
|
121 |
+
Tess, short for Tesoro (Treasure in Italian), is a general purpose Large Language Model series. Tess-7B-v2.0 was trained on the Mistral-7B-v0.2 base.
|
122 |
+
|
123 |
+
# Prompt Format:
|
124 |
+
|
125 |
+
```
|
126 |
+
SYSTEM: <ANY SYSTEM CONTEXT>
|
127 |
+
USER:
|
128 |
+
ASSISTANT:
|
129 |
+
```
|
130 |
+
|
131 |
+
### Below shows a code example on how to use this model:
|
132 |
+
|
133 |
+
```python
|
134 |
+
import torch, json
|
135 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
136 |
+
|
137 |
+
model_path = "migtissera/Tess-7B-v2.0"
|
138 |
+
output_file_path = "./conversations.jsonl"
|
139 |
+
|
140 |
+
model = AutoModelForCausalLM.from_pretrained(
|
141 |
+
model_path,
|
142 |
+
torch_dtype=torch.float16,
|
143 |
+
device_map="auto",
|
144 |
+
load_in_8bit=False,
|
145 |
+
trust_remote_code=True,
|
146 |
+
)
|
147 |
+
|
148 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
149 |
+
|
150 |
+
|
151 |
+
def generate_text(instruction):
|
152 |
+
tokens = tokenizer.encode(instruction)
|
153 |
+
tokens = torch.LongTensor(tokens).unsqueeze(0)
|
154 |
+
tokens = tokens.to("cuda")
|
155 |
+
|
156 |
+
instance = {
|
157 |
+
"input_ids": tokens,
|
158 |
+
"top_p": 1.0,
|
159 |
+
"temperature": 0.5,
|
160 |
+
"generate_len": 1024,
|
161 |
+
"top_k": 50,
|
162 |
+
}
|
163 |
+
|
164 |
+
length = len(tokens[0])
|
165 |
+
with torch.no_grad():
|
166 |
+
rest = model.generate(
|
167 |
+
input_ids=tokens,
|
168 |
+
max_length=length + instance["generate_len"],
|
169 |
+
use_cache=True,
|
170 |
+
do_sample=True,
|
171 |
+
top_p=instance["top_p"],
|
172 |
+
temperature=instance["temperature"],
|
173 |
+
top_k=instance["top_k"],
|
174 |
+
num_return_sequences=1,
|
175 |
+
)
|
176 |
+
output = rest[0][length:]
|
177 |
+
string = tokenizer.decode(output, skip_special_tokens=True)
|
178 |
+
answer = string.split("USER:")[0].strip()
|
179 |
+
return f"{answer}"
|
180 |
+
|
181 |
+
|
182 |
+
conversation = f"SYSTEM: Answer the question thoughtfully and intelligently. Always answer without hesitation."
|
183 |
+
|
184 |
+
|
185 |
+
while True:
|
186 |
+
user_input = input("You: ")
|
187 |
+
llm_prompt = f"{conversation} \nUSER: {user_input} \nASSISTANT: "
|
188 |
+
answer = generate_text(llm_prompt)
|
189 |
+
print(answer)
|
190 |
+
conversation = f"{llm_prompt}{answer}"
|
191 |
+
json_data = {"prompt": user_input, "answer": answer}
|
192 |
+
|
193 |
+
## Save your conversation
|
194 |
+
with open(output_file_path, "a") as output_file:
|
195 |
+
output_file.write(json.dumps(json_data) + "\n")
|
196 |
+
|
197 |
+
```
|
198 |
+
|
199 |
+
<br>
|
200 |
+
|
201 |
+
#### Limitations & Biases:
|
202 |
+
|
203 |
+
While this model aims for accuracy, it can occasionally produce inaccurate or misleading results.
|
204 |
+
|
205 |
+
Despite diligent efforts in refining the pretraining data, there remains a possibility for the generation of inappropriate, biased, or offensive content.
|
206 |
+
|
207 |
+
Exercise caution and cross-check information when necessary. This is an uncensored model.
|
208 |
+
|
209 |
+
|
210 |
+
<br>
|
211 |
+
|
212 |
+
|