RichardErkhov commited on
Commit
36934ca
·
verified ·
1 Parent(s): 3420ec0

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +212 -0
README.md ADDED
@@ -0,0 +1,212 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ Tess-10.7B-v2.0 - GGUF
11
+ - Model creator: https://huggingface.co/Joseph717171/
12
+ - Original model: https://huggingface.co/Joseph717171/Tess-10.7B-v2.0/
13
+
14
+
15
+ | Name | Quant method | Size |
16
+ | ---- | ---- | ---- |
17
+ | [Tess-10.7B-v2.0.Q2_K.gguf](https://huggingface.co/RichardErkhov/Joseph717171_-_Tess-10.7B-v2.0-gguf/blob/main/Tess-10.7B-v2.0.Q2_K.gguf) | Q2_K | 3.73GB |
18
+ | [Tess-10.7B-v2.0.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/Joseph717171_-_Tess-10.7B-v2.0-gguf/blob/main/Tess-10.7B-v2.0.IQ3_XS.gguf) | IQ3_XS | 4.14GB |
19
+ | [Tess-10.7B-v2.0.IQ3_S.gguf](https://huggingface.co/RichardErkhov/Joseph717171_-_Tess-10.7B-v2.0-gguf/blob/main/Tess-10.7B-v2.0.IQ3_S.gguf) | IQ3_S | 4.37GB |
20
+ | [Tess-10.7B-v2.0.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Joseph717171_-_Tess-10.7B-v2.0-gguf/blob/main/Tess-10.7B-v2.0.Q3_K_S.gguf) | Q3_K_S | 4.34GB |
21
+ | [Tess-10.7B-v2.0.IQ3_M.gguf](https://huggingface.co/RichardErkhov/Joseph717171_-_Tess-10.7B-v2.0-gguf/blob/main/Tess-10.7B-v2.0.IQ3_M.gguf) | IQ3_M | 4.51GB |
22
+ | [Tess-10.7B-v2.0.Q3_K.gguf](https://huggingface.co/RichardErkhov/Joseph717171_-_Tess-10.7B-v2.0-gguf/blob/main/Tess-10.7B-v2.0.Q3_K.gguf) | Q3_K | 4.84GB |
23
+ | [Tess-10.7B-v2.0.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Joseph717171_-_Tess-10.7B-v2.0-gguf/blob/main/Tess-10.7B-v2.0.Q3_K_M.gguf) | Q3_K_M | 4.84GB |
24
+ | [Tess-10.7B-v2.0.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Joseph717171_-_Tess-10.7B-v2.0-gguf/blob/main/Tess-10.7B-v2.0.Q3_K_L.gguf) | Q3_K_L | 5.26GB |
25
+ | [Tess-10.7B-v2.0.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Joseph717171_-_Tess-10.7B-v2.0-gguf/blob/main/Tess-10.7B-v2.0.IQ4_XS.gguf) | IQ4_XS | 5.43GB |
26
+ | [Tess-10.7B-v2.0.Q4_0.gguf](https://huggingface.co/RichardErkhov/Joseph717171_-_Tess-10.7B-v2.0-gguf/blob/main/Tess-10.7B-v2.0.Q4_0.gguf) | Q4_0 | 5.66GB |
27
+ | [Tess-10.7B-v2.0.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Joseph717171_-_Tess-10.7B-v2.0-gguf/blob/main/Tess-10.7B-v2.0.IQ4_NL.gguf) | IQ4_NL | 5.72GB |
28
+ | [Tess-10.7B-v2.0.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Joseph717171_-_Tess-10.7B-v2.0-gguf/blob/main/Tess-10.7B-v2.0.Q4_K_S.gguf) | Q4_K_S | 5.7GB |
29
+ | [Tess-10.7B-v2.0.Q4_K.gguf](https://huggingface.co/RichardErkhov/Joseph717171_-_Tess-10.7B-v2.0-gguf/blob/main/Tess-10.7B-v2.0.Q4_K.gguf) | Q4_K | 6.02GB |
30
+ | [Tess-10.7B-v2.0.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Joseph717171_-_Tess-10.7B-v2.0-gguf/blob/main/Tess-10.7B-v2.0.Q4_K_M.gguf) | Q4_K_M | 6.02GB |
31
+ | [Tess-10.7B-v2.0.Q4_1.gguf](https://huggingface.co/RichardErkhov/Joseph717171_-_Tess-10.7B-v2.0-gguf/blob/main/Tess-10.7B-v2.0.Q4_1.gguf) | Q4_1 | 6.27GB |
32
+ | [Tess-10.7B-v2.0.Q5_0.gguf](https://huggingface.co/RichardErkhov/Joseph717171_-_Tess-10.7B-v2.0-gguf/blob/main/Tess-10.7B-v2.0.Q5_0.gguf) | Q5_0 | 6.89GB |
33
+ | [Tess-10.7B-v2.0.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Joseph717171_-_Tess-10.7B-v2.0-gguf/blob/main/Tess-10.7B-v2.0.Q5_K_S.gguf) | Q5_K_S | 6.89GB |
34
+ | [Tess-10.7B-v2.0.Q5_K.gguf](https://huggingface.co/RichardErkhov/Joseph717171_-_Tess-10.7B-v2.0-gguf/blob/main/Tess-10.7B-v2.0.Q5_K.gguf) | Q5_K | 7.08GB |
35
+ | [Tess-10.7B-v2.0.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Joseph717171_-_Tess-10.7B-v2.0-gguf/blob/main/Tess-10.7B-v2.0.Q5_K_M.gguf) | Q5_K_M | 7.08GB |
36
+ | [Tess-10.7B-v2.0.Q5_1.gguf](https://huggingface.co/RichardErkhov/Joseph717171_-_Tess-10.7B-v2.0-gguf/blob/main/Tess-10.7B-v2.0.Q5_1.gguf) | Q5_1 | 7.51GB |
37
+ | [Tess-10.7B-v2.0.Q6_K.gguf](https://huggingface.co/RichardErkhov/Joseph717171_-_Tess-10.7B-v2.0-gguf/blob/main/Tess-10.7B-v2.0.Q6_K.gguf) | Q6_K | 8.2GB |
38
+ | [Tess-10.7B-v2.0.Q8_0.gguf](https://huggingface.co/RichardErkhov/Joseph717171_-_Tess-10.7B-v2.0-gguf/blob/main/Tess-10.7B-v2.0.Q8_0.gguf) | Q8_0 | 10.62GB |
39
+
40
+
41
+
42
+
43
+ Original model description:
44
+ ---
45
+ license: apache-2.0
46
+ base_model: []
47
+ library_name: transformers
48
+ tags:
49
+ - mergekit
50
+ - merge
51
+ pipeline_tag: text-generation
52
+ ---
53
+ # Credit for the model card's description goes to ddh0, mergekit, and, migtissera
54
+ # Inspired by ddh0/Starling-LM-10.7B-beta and ddh0/Mistral-10.7B-Instruct-v0.2
55
+ # Tess-10.7B-v0.2
56
+
57
+ # Deprecated
58
+ "This model is deprecated due to the use of wrong sliding window parameter while training. Will update with the new model link in a couple of days." - migtissera
59
+
60
+ This is Tess-10.7B-v0.2, a depth-upscaled version of [migtissera/Tess-7B-v2.0](https://huggingface.co/migtissera/Tess-7B-v2.0).
61
+
62
+ This model is intended to be used as a basis for further fine-tuning, or as a drop-in upgrade from the original 7 billion parameter model.
63
+
64
+ Paper detailing how Depth-Up Scaling works: [SOLAR 10.7B: Scaling Large Language Models with Simple yet Effective Depth Up-Scaling](https://arxiv.org/abs/2312.15166)
65
+
66
+ This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
67
+
68
+
69
+ # Prompt format same as [migtissera/Tess-7B-v2.0](https://huggingface.co/migtissera/Tess-7B-v2.0)
70
+
71
+ # Prompt Format:
72
+
73
+ ```
74
+ SYSTEM: <ANY SYSTEM CONTEXT>
75
+ USER:
76
+ ASSISTANT:
77
+ ```
78
+
79
+
80
+ ## Merge Details
81
+ ### Merge Method
82
+
83
+ This model was merged using the passthrough merge method.
84
+
85
+ ### Models Merged
86
+
87
+ The following models were included in the merge:
88
+ * /Users/jsarnecki/opt/migtissera/Tess-7B-v2.0
89
+
90
+ ### Configuration
91
+
92
+ The following YAML configuration was used to produce this model:
93
+
94
+ ```yaml
95
+ dtype: bfloat16
96
+ merge_method: passthrough
97
+ slices:
98
+ - sources:
99
+ - layer_range: [0, 24]
100
+ model: /Users/jsarnecki/opt/migtissera/Tess-7B-v2.0
101
+ - sources:
102
+ - layer_range: [8, 32]
103
+ model: /Users/jsarnecki/opt/migtissera/Tess-7B-v2.0
104
+
105
+ ```
106
+ # GGUFs (Thanks to [bartowski](https://huggingface.co/bartowski))
107
+
108
+ https://huggingface.co/bartowski/Tess-10.7B-v2.0-GGUF
109
+
110
+ # exl2s (Thanks to [bartowski](https://huggingface.co/bartowski))
111
+
112
+ https://huggingface.co/bartowski/Tess-10.7B-v2.0-exl2
113
+
114
+ ![Tesoro](https://huggingface.co/migtissera/Tess-7B-v2.0/resolve/main/Tesoro.png)
115
+
116
+ ---
117
+ license: apache-2.0
118
+ ---
119
+
120
+ # Tess-7B-v2.0
121
+ Tess, short for Tesoro (Treasure in Italian), is a general purpose Large Language Model series. Tess-7B-v2.0 was trained on the Mistral-7B-v0.2 base.
122
+
123
+ # Prompt Format:
124
+
125
+ ```
126
+ SYSTEM: <ANY SYSTEM CONTEXT>
127
+ USER:
128
+ ASSISTANT:
129
+ ```
130
+
131
+ ### Below shows a code example on how to use this model:
132
+
133
+ ```python
134
+ import torch, json
135
+ from transformers import AutoModelForCausalLM, AutoTokenizer
136
+
137
+ model_path = "migtissera/Tess-7B-v2.0"
138
+ output_file_path = "./conversations.jsonl"
139
+
140
+ model = AutoModelForCausalLM.from_pretrained(
141
+ model_path,
142
+ torch_dtype=torch.float16,
143
+ device_map="auto",
144
+ load_in_8bit=False,
145
+ trust_remote_code=True,
146
+ )
147
+
148
+ tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
149
+
150
+
151
+ def generate_text(instruction):
152
+ tokens = tokenizer.encode(instruction)
153
+ tokens = torch.LongTensor(tokens).unsqueeze(0)
154
+ tokens = tokens.to("cuda")
155
+
156
+ instance = {
157
+ "input_ids": tokens,
158
+ "top_p": 1.0,
159
+ "temperature": 0.5,
160
+ "generate_len": 1024,
161
+ "top_k": 50,
162
+ }
163
+
164
+ length = len(tokens[0])
165
+ with torch.no_grad():
166
+ rest = model.generate(
167
+ input_ids=tokens,
168
+ max_length=length + instance["generate_len"],
169
+ use_cache=True,
170
+ do_sample=True,
171
+ top_p=instance["top_p"],
172
+ temperature=instance["temperature"],
173
+ top_k=instance["top_k"],
174
+ num_return_sequences=1,
175
+ )
176
+ output = rest[0][length:]
177
+ string = tokenizer.decode(output, skip_special_tokens=True)
178
+ answer = string.split("USER:")[0].strip()
179
+ return f"{answer}"
180
+
181
+
182
+ conversation = f"SYSTEM: Answer the question thoughtfully and intelligently. Always answer without hesitation."
183
+
184
+
185
+ while True:
186
+ user_input = input("You: ")
187
+ llm_prompt = f"{conversation} \nUSER: {user_input} \nASSISTANT: "
188
+ answer = generate_text(llm_prompt)
189
+ print(answer)
190
+ conversation = f"{llm_prompt}{answer}"
191
+ json_data = {"prompt": user_input, "answer": answer}
192
+
193
+ ## Save your conversation
194
+ with open(output_file_path, "a") as output_file:
195
+ output_file.write(json.dumps(json_data) + "\n")
196
+
197
+ ```
198
+
199
+ <br>
200
+
201
+ #### Limitations & Biases:
202
+
203
+ While this model aims for accuracy, it can occasionally produce inaccurate or misleading results.
204
+
205
+ Despite diligent efforts in refining the pretraining data, there remains a possibility for the generation of inappropriate, biased, or offensive content.
206
+
207
+ Exercise caution and cross-check information when necessary. This is an uncensored model.
208
+
209
+
210
+ <br>
211
+
212
+