Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) AutoCoder_S_6.7B - GGUF - Model creator: https://huggingface.co/Bin12345/ - Original model: https://huggingface.co/Bin12345/AutoCoder_S_6.7B/ | Name | Quant method | Size | | ---- | ---- | ---- | | [AutoCoder_S_6.7B.Q2_K.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.Q2_K.gguf) | Q2_K | 2.36GB | | [AutoCoder_S_6.7B.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.IQ3_XS.gguf) | IQ3_XS | 2.61GB | | [AutoCoder_S_6.7B.IQ3_S.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.IQ3_S.gguf) | IQ3_S | 2.75GB | | [AutoCoder_S_6.7B.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.Q3_K_S.gguf) | Q3_K_S | 2.75GB | | [AutoCoder_S_6.7B.IQ3_M.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.IQ3_M.gguf) | IQ3_M | 2.9GB | | [AutoCoder_S_6.7B.Q3_K.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.Q3_K.gguf) | Q3_K | 3.07GB | | [AutoCoder_S_6.7B.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.Q3_K_M.gguf) | Q3_K_M | 3.07GB | | [AutoCoder_S_6.7B.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.Q3_K_L.gguf) | Q3_K_L | 3.35GB | | [AutoCoder_S_6.7B.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.IQ4_XS.gguf) | IQ4_XS | 3.4GB | | [AutoCoder_S_6.7B.Q4_0.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.Q4_0.gguf) | Q4_0 | 3.56GB | | [AutoCoder_S_6.7B.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.IQ4_NL.gguf) | IQ4_NL | 3.59GB | | [AutoCoder_S_6.7B.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.Q4_K_S.gguf) | Q4_K_S | 3.59GB | | [AutoCoder_S_6.7B.Q4_K.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.Q4_K.gguf) | Q4_K | 3.8GB | | [AutoCoder_S_6.7B.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.Q4_K_M.gguf) | Q4_K_M | 3.8GB | | [AutoCoder_S_6.7B.Q4_1.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.Q4_1.gguf) | Q4_1 | 3.95GB | | [AutoCoder_S_6.7B.Q5_0.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.Q5_0.gguf) | Q5_0 | 4.33GB | | [AutoCoder_S_6.7B.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.Q5_K_S.gguf) | Q5_K_S | 4.33GB | | [AutoCoder_S_6.7B.Q5_K.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.Q5_K.gguf) | Q5_K | 4.46GB | | [AutoCoder_S_6.7B.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.Q5_K_M.gguf) | Q5_K_M | 4.46GB | | [AutoCoder_S_6.7B.Q5_1.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.Q5_1.gguf) | Q5_1 | 4.72GB | | [AutoCoder_S_6.7B.Q6_K.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.Q6_K.gguf) | Q6_K | 5.15GB | | [AutoCoder_S_6.7B.Q8_0.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.Q8_0.gguf) | Q8_0 | 6.67GB | Original model description: --- license: apache-2.0 --- We introduced a new model designed for the Code generation task. It 33B version's test accuracy on the HumanEval base dataset surpasses that of GPT-4 Turbo (April 2024). (90.9% vs 90.2%). Additionally, compared to previous open-source models, AutoCoder offers a new feature: it can **automatically install the required packages** and attempt to run the code until it deems there are no issues, **whenever the user wishes to execute the code**. This is the 6.7B version of AutoCoder. Its base model is deepseeker-coder. See details on the [AutoCoder GitHub](https://github.com/bin123apple/AutoCoder). Simple test script: ``` model_path = "" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto") HumanEval = load_dataset("evalplus/humanevalplus") Input = "" # input your question here messages=[ { 'role': 'user', 'content': Input} ] inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device) outputs = model.generate(inputs, max_new_tokens=1024, do_sample=False, temperature=0.0, top_p=1.0, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id) answer = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True) ``` Paper: https://arxiv.org/abs/2405.14906