File size: 5,573 Bytes
fa4843d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
AutoCoder_S_6.7B - GGUF
- Model creator: https://huggingface.co/Bin12345/
- Original model: https://huggingface.co/Bin12345/AutoCoder_S_6.7B/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [AutoCoder_S_6.7B.Q2_K.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.Q2_K.gguf) | Q2_K | 2.36GB |
| [AutoCoder_S_6.7B.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.IQ3_XS.gguf) | IQ3_XS | 2.61GB |
| [AutoCoder_S_6.7B.IQ3_S.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.IQ3_S.gguf) | IQ3_S | 2.75GB |
| [AutoCoder_S_6.7B.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.Q3_K_S.gguf) | Q3_K_S | 2.75GB |
| [AutoCoder_S_6.7B.IQ3_M.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.IQ3_M.gguf) | IQ3_M | 2.9GB |
| [AutoCoder_S_6.7B.Q3_K.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.Q3_K.gguf) | Q3_K | 3.07GB |
| [AutoCoder_S_6.7B.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.Q3_K_M.gguf) | Q3_K_M | 3.07GB |
| [AutoCoder_S_6.7B.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.Q3_K_L.gguf) | Q3_K_L | 3.35GB |
| [AutoCoder_S_6.7B.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.IQ4_XS.gguf) | IQ4_XS | 3.4GB |
| [AutoCoder_S_6.7B.Q4_0.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.Q4_0.gguf) | Q4_0 | 3.56GB |
| [AutoCoder_S_6.7B.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.IQ4_NL.gguf) | IQ4_NL | 3.59GB |
| [AutoCoder_S_6.7B.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.Q4_K_S.gguf) | Q4_K_S | 3.59GB |
| [AutoCoder_S_6.7B.Q4_K.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.Q4_K.gguf) | Q4_K | 3.8GB |
| [AutoCoder_S_6.7B.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.Q4_K_M.gguf) | Q4_K_M | 3.8GB |
| [AutoCoder_S_6.7B.Q4_1.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.Q4_1.gguf) | Q4_1 | 3.95GB |
| [AutoCoder_S_6.7B.Q5_0.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.Q5_0.gguf) | Q5_0 | 4.33GB |
| [AutoCoder_S_6.7B.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.Q5_K_S.gguf) | Q5_K_S | 4.33GB |
| [AutoCoder_S_6.7B.Q5_K.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.Q5_K.gguf) | Q5_K | 4.46GB |
| [AutoCoder_S_6.7B.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.Q5_K_M.gguf) | Q5_K_M | 4.46GB |
| [AutoCoder_S_6.7B.Q5_1.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.Q5_1.gguf) | Q5_1 | 4.72GB |
| [AutoCoder_S_6.7B.Q6_K.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.Q6_K.gguf) | Q6_K | 5.15GB |
| [AutoCoder_S_6.7B.Q8_0.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.Q8_0.gguf) | Q8_0 | 6.67GB |
Original model description:
---
license: apache-2.0
---
We introduced a new model designed for the Code generation task. It 33B version's test accuracy on the HumanEval base dataset surpasses that of GPT-4 Turbo (April 2024). (90.9% vs 90.2%).
Additionally, compared to previous open-source models, AutoCoder offers a new feature: it can **automatically install the required packages** and attempt to run the code until it deems there are no issues, **whenever the user wishes to execute the code**.
This is the 6.7B version of AutoCoder. Its base model is deepseeker-coder.
See details on the [AutoCoder GitHub](https://github.com/bin123apple/AutoCoder).
Simple test script:
```
model_path = ""
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path,
device_map="auto")
HumanEval = load_dataset("evalplus/humanevalplus")
Input = "" # input your question here
messages=[
{ 'role': 'user', 'content': Input}
]
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True,
return_tensors="pt").to(model.device)
outputs = model.generate(inputs,
max_new_tokens=1024,
do_sample=False,
temperature=0.0,
top_p=1.0,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id)
answer = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)
```
Paper: https://arxiv.org/abs/2405.14906
|