File size: 5,573 Bytes
fa4843d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
Quantization made by Richard Erkhov.

[Github](https://github.com/RichardErkhov)

[Discord](https://discord.gg/pvy7H8DZMG)

[Request more models](https://github.com/RichardErkhov/quant_request)


AutoCoder_S_6.7B - GGUF
- Model creator: https://huggingface.co/Bin12345/
- Original model: https://huggingface.co/Bin12345/AutoCoder_S_6.7B/


| Name | Quant method | Size |
| ---- | ---- | ---- |
| [AutoCoder_S_6.7B.Q2_K.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.Q2_K.gguf) | Q2_K | 2.36GB |
| [AutoCoder_S_6.7B.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.IQ3_XS.gguf) | IQ3_XS | 2.61GB |
| [AutoCoder_S_6.7B.IQ3_S.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.IQ3_S.gguf) | IQ3_S | 2.75GB |
| [AutoCoder_S_6.7B.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.Q3_K_S.gguf) | Q3_K_S | 2.75GB |
| [AutoCoder_S_6.7B.IQ3_M.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.IQ3_M.gguf) | IQ3_M | 2.9GB |
| [AutoCoder_S_6.7B.Q3_K.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.Q3_K.gguf) | Q3_K | 3.07GB |
| [AutoCoder_S_6.7B.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.Q3_K_M.gguf) | Q3_K_M | 3.07GB |
| [AutoCoder_S_6.7B.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.Q3_K_L.gguf) | Q3_K_L | 3.35GB |
| [AutoCoder_S_6.7B.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.IQ4_XS.gguf) | IQ4_XS | 3.4GB |
| [AutoCoder_S_6.7B.Q4_0.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.Q4_0.gguf) | Q4_0 | 3.56GB |
| [AutoCoder_S_6.7B.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.IQ4_NL.gguf) | IQ4_NL | 3.59GB |
| [AutoCoder_S_6.7B.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.Q4_K_S.gguf) | Q4_K_S | 3.59GB |
| [AutoCoder_S_6.7B.Q4_K.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.Q4_K.gguf) | Q4_K | 3.8GB |
| [AutoCoder_S_6.7B.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.Q4_K_M.gguf) | Q4_K_M | 3.8GB |
| [AutoCoder_S_6.7B.Q4_1.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.Q4_1.gguf) | Q4_1 | 3.95GB |
| [AutoCoder_S_6.7B.Q5_0.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.Q5_0.gguf) | Q5_0 | 4.33GB |
| [AutoCoder_S_6.7B.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.Q5_K_S.gguf) | Q5_K_S | 4.33GB |
| [AutoCoder_S_6.7B.Q5_K.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.Q5_K.gguf) | Q5_K | 4.46GB |
| [AutoCoder_S_6.7B.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.Q5_K_M.gguf) | Q5_K_M | 4.46GB |
| [AutoCoder_S_6.7B.Q5_1.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.Q5_1.gguf) | Q5_1 | 4.72GB |
| [AutoCoder_S_6.7B.Q6_K.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.Q6_K.gguf) | Q6_K | 5.15GB |
| [AutoCoder_S_6.7B.Q8_0.gguf](https://huggingface.co/RichardErkhov/Bin12345_-_AutoCoder_S_6.7B-gguf/blob/main/AutoCoder_S_6.7B.Q8_0.gguf) | Q8_0 | 6.67GB |




Original model description:
---

license: apache-2.0

---



We introduced a new model designed for the Code generation task. It 33B version's test accuracy on the HumanEval base dataset surpasses that of GPT-4 Turbo (April 2024). (90.9% vs 90.2%).



Additionally, compared to previous open-source models, AutoCoder offers a new feature: it can **automatically install the required packages** and attempt to run the code until it deems there are no issues, **whenever the user wishes to execute the code**.



This is the 6.7B version of AutoCoder. Its base model is deepseeker-coder.



See details on the [AutoCoder GitHub](https://github.com/bin123apple/AutoCoder).



Simple test script:



```

model_path = ""
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path, 
                                             device_map="auto")


HumanEval = load_dataset("evalplus/humanevalplus")



Input = "" # input your question here

 

messages=[

    { 'role': 'user', 'content': Input}

]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, 

                                        return_tensors="pt").to(model.device)

outputs = model.generate(inputs, 
                        max_new_tokens=1024, 

                        do_sample=False, 

                        temperature=0.0,

                        top_p=1.0, 

                        num_return_sequences=1, 

                        eos_token_id=tokenizer.eos_token_id)


answer = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)
```



Paper: https://arxiv.org/abs/2405.14906