--- language: - en license: apache-2.0 library_name: transformers base_model: - ResplendentAI/Paradigm_7B - jeiku/Theory_of_Mind_Mistral - ResplendentAI/Paradigm_7B - jeiku/selfbot_256_mistral - ResplendentAI/Paradigm_7B - jeiku/Gnosis_Reformatted_Mistral - ResplendentAI/Paradigm_7B model-index: - name: Aura_v2_7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 73.46 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ResplendentAI/Aura_v2_7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 88.64 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ResplendentAI/Aura_v2_7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 63.97 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ResplendentAI/Aura_v2_7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 75.17 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ResplendentAI/Aura_v2_7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 84.45 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ResplendentAI/Aura_v2_7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 66.49 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ResplendentAI/Aura_v2_7B name: Open LLM Leaderboard --- # Aura v2 ![image/png](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F626dfb8786671a29c715f8a9%2FtIy1fnUYHc7v_N6ym6Z7g.png) The second version of the Aura line is a direct improvement over the original. Expect poetic and eloquent outputs with real emotion behind them. I recommend keeping the temperature around 1.5 or lower with a Min P value of 0.05. This model can get carried away with prose at higher temperature. I will say though that the prose of this model is distinct from the GPT 3.5/4 variant, and lends an air of humanity to the outputs. I am aware that this model is overfit, but that was the point of the entire exercise. If you have trouble getting the model to follow an asterisks/quote format, I recommend asterisks/plaintext instead. This model skews toward shorter outputs, so be prepared to lengthen your introduction and examples if you want longer outputs. This model responds best to ChatML for multiturn conversations. This model, like all other Mistral based models, is compatible with a Mistral compatible mmproj file for multimodal vision capabilities in KoboldCPP. # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ResplendentAI__Aura_v2_7B) | Metric |Value| |---------------------------------|----:| |Avg. |75.36| |AI2 Reasoning Challenge (25-Shot)|73.46| |HellaSwag (10-Shot) |88.64| |MMLU (5-Shot) |63.97| |TruthfulQA (0-shot) |75.17| |Winogrande (5-shot) |84.45| |GSM8k (5-shot) |66.49|