|
from monotonic_align import maximum_path |
|
from monotonic_align import mask_from_lens |
|
from monotonic_align.core import maximum_path_c |
|
import numpy as np |
|
import torch |
|
import copy |
|
from torch import nn |
|
import torch.nn.functional as F |
|
import torchaudio |
|
import librosa |
|
import matplotlib.pyplot as plt |
|
import os |
|
from huggingface_hub import HfApi |
|
api = HfApi() |
|
|
|
def maximum_path(neg_cent, mask): |
|
""" Cython optimized version. |
|
neg_cent: [b, t_t, t_s] |
|
mask: [b, t_t, t_s] |
|
""" |
|
device = neg_cent.device |
|
dtype = neg_cent.dtype |
|
neg_cent = np.ascontiguousarray(neg_cent.data.cpu().numpy().astype(np.float32)) |
|
path = np.ascontiguousarray(np.zeros(neg_cent.shape, dtype=np.int32)) |
|
|
|
t_t_max = np.ascontiguousarray(mask.sum(1)[:, 0].data.cpu().numpy().astype(np.int32)) |
|
t_s_max = np.ascontiguousarray(mask.sum(2)[:, 0].data.cpu().numpy().astype(np.int32)) |
|
maximum_path_c(path, neg_cent, t_t_max, t_s_max) |
|
return torch.from_numpy(path).to(device=device, dtype=dtype) |
|
|
|
def get_data_path_list(train_path=None, val_path=None): |
|
if train_path is None: |
|
train_path = "Data/train_list.txt" |
|
if val_path is None: |
|
val_path = "Data/val_list.txt" |
|
|
|
with open(train_path, 'r', encoding='utf-8', errors='ignore') as f: |
|
train_list = f.readlines() |
|
with open(val_path, 'r', encoding='utf-8', errors='ignore') as f: |
|
val_list = f.readlines() |
|
|
|
return train_list, val_list |
|
|
|
def length_to_mask(lengths): |
|
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths) |
|
mask = torch.gt(mask+1, lengths.unsqueeze(1)) |
|
return mask |
|
|
|
|
|
def adv_loss(logits, target): |
|
assert target in [1, 0] |
|
if len(logits.shape) > 1: |
|
logits = logits.reshape(-1) |
|
targets = torch.full_like(logits, fill_value=target) |
|
logits = logits.clamp(min=-10, max=10) |
|
loss = F.binary_cross_entropy_with_logits(logits, targets) |
|
return loss |
|
|
|
|
|
def r1_reg(d_out, x_in): |
|
|
|
batch_size = x_in.size(0) |
|
grad_dout = torch.autograd.grad( |
|
outputs=d_out.sum(), inputs=x_in, |
|
create_graph=True, retain_graph=True, only_inputs=True |
|
)[0] |
|
grad_dout2 = grad_dout.pow(2) |
|
assert(grad_dout2.size() == x_in.size()) |
|
reg = 0.5 * grad_dout2.view(batch_size, -1).sum(1).mean(0) |
|
return reg |
|
|
|
|
|
def log_norm(x, mean=-4, std=4, dim=2): |
|
""" |
|
normalized log mel -> mel -> norm -> log(norm) |
|
""" |
|
x = torch.log(torch.exp(x * std + mean).norm(dim=dim)) |
|
return x |
|
|
|
def get_image(arrs): |
|
plt.switch_backend('agg') |
|
fig = plt.figure() |
|
ax = plt.gca() |
|
ax.imshow(arrs) |
|
|
|
return fig |
|
|
|
def upload_latest_checkpoint(log_dir, repo_id): |
|
|
|
checkpoint_files = [f for f in os.listdir(log_dir) if f.endswith('.pth')] |
|
|
|
if not checkpoint_files: |
|
print("No checkpoint files found.") |
|
return |
|
|
|
|
|
checkpoint_files.sort(key=lambda x: int(x.split('_')[-1].split('.')[0])) |
|
|
|
|
|
latest_checkpoint = checkpoint_files[-1] |
|
latest_checkpoint_path = osp.join(log_dir, latest_checkpoint) |
|
|
|
|
|
api.upload_file( |
|
path_or_fileobj=latest_checkpoint_path, |
|
path_in_repo=latest_checkpoint, |
|
repo_id=repo_id, |
|
repo_type="model", |
|
token="" |
|
) |
|
print(f"Uploaded {latest_checkpoint} to Hugging Face Hub.") |