|
import os |
|
import os.path as osp |
|
import re |
|
import sys |
|
import yaml |
|
import shutil |
|
import numpy as np |
|
import torch |
|
import click |
|
import warnings |
|
warnings.simplefilter('ignore') |
|
from torch.utils.tensorboard import SummaryWriter |
|
|
|
|
|
import random |
|
import yaml |
|
from munch import Munch |
|
import numpy as np |
|
import torch |
|
from torch import nn |
|
import torch.nn.functional as F |
|
import torchaudio |
|
import librosa |
|
|
|
from models import * |
|
from meldataset import build_dataloader |
|
from utils import * |
|
from optimizers import build_optimizer |
|
import time |
|
|
|
from accelerate import Accelerator, DistributedDataParallelKwargs |
|
from accelerate.utils import tqdm, ProjectConfiguration |
|
|
|
class TimeStrech(nn.Module): |
|
def __init__(self, scale): |
|
super(TimeStrech, self).__init__() |
|
self.scale = scale |
|
|
|
def forward(self, x): |
|
mel_size = x.size(-1) |
|
|
|
x = F.interpolate(x, scale_factor=(1, self.scale), align_corners=False, |
|
recompute_scale_factor=True, mode='bilinear').squeeze() |
|
|
|
return x.unsqueeze(1) |
|
|
|
|
|
class MyDataParallel(torch.nn.DataParallel): |
|
def __getattr__(self, name): |
|
try: |
|
return super().__getattr__(name) |
|
except AttributeError: |
|
return getattr(self.module, name) |
|
|
|
import logging |
|
from logging import StreamHandler |
|
logger = logging.getLogger(__name__) |
|
logger.setLevel(logging.DEBUG) |
|
handler = StreamHandler() |
|
handler.setLevel(logging.DEBUG) |
|
logger.addHandler(handler) |
|
|
|
@click.command() |
|
@click.option('-p', '--config_path', default='Configs/config.yml', type=str) |
|
def main(config_path): |
|
|
|
|
|
config = yaml.safe_load(open(config_path)) |
|
|
|
log_dir = config['log_dir'] |
|
if not osp.exists(log_dir): os.makedirs(log_dir, exist_ok=True) |
|
shutil.copy(config_path, osp.join(log_dir, osp.basename(config_path))) |
|
writer = SummaryWriter(log_dir + "/tensorboard") |
|
|
|
|
|
file_handler = logging.FileHandler(osp.join(log_dir, 'train.log')) |
|
file_handler.setLevel(logging.DEBUG) |
|
file_handler.setFormatter(logging.Formatter('%(levelname)s:%(asctime)s: %(message)s')) |
|
logger.addHandler(file_handler) |
|
|
|
|
|
|
|
|
|
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True, broadcast_buffers=False) |
|
configAcc = ProjectConfiguration(project_dir=log_dir, logging_dir=log_dir) |
|
accelerator = Accelerator( |
|
project_config=configAcc, |
|
split_batches=True, |
|
kwargs_handlers=[ddp_kwargs], |
|
mixed_precision='bf16') |
|
|
|
accelerator.init_trackers(project_name="StyleTTS2-Second-Stage") |
|
|
|
batch_size = config.get('batch_size', 10) |
|
device = accelerator.device |
|
epochs = config.get('epochs_2nd', 100) |
|
save_freq = config.get('save_freq', 2) |
|
train_path = config.get('train_data', None) |
|
val_path = config.get('val_data', None) |
|
multigpu = config.get('multigpu', False) |
|
log_interval = config.get('log_interval', 10) |
|
saving_epoch = config.get('save_freq', 2) |
|
|
|
|
|
train_list, val_list = get_data_path_list(train_path, val_path) |
|
|
|
train_dataloader = build_dataloader(train_list, |
|
batch_size=batch_size, |
|
num_workers=8, |
|
dataset_config={}, |
|
device=device) |
|
|
|
val_dataloader = build_dataloader(val_list, |
|
batch_size=batch_size, |
|
validation=True, |
|
num_workers=2, |
|
device=device, |
|
dataset_config={}) |
|
|
|
ASR_config = config.get('ASR_config', False) |
|
ASR_path = config.get('ASR_path', False) |
|
text_aligner = load_ASR_models(ASR_path, ASR_config) |
|
|
|
|
|
F0_path = config.get('F0_path', False) |
|
pitch_extractor = load_F0_models(F0_path) |
|
|
|
scheduler_params = { |
|
"max_lr": float(config['optimizer_params'].get('lr', 1e-4)), |
|
"pct_start": float(config['optimizer_params'].get('pct_start', 0.0)), |
|
"epochs": epochs, |
|
"steps_per_epoch": len(train_dataloader), |
|
} |
|
|
|
model = build_model(Munch(config['model_params']), text_aligner, pitch_extractor) |
|
|
|
_ = [model[key].to(device) for key in model] |
|
|
|
optimizer = build_optimizer({key: model[key].parameters() for key in model}, |
|
scheduler_params_dict= {key: scheduler_params.copy() for key in model}) |
|
running_std = [] |
|
for k, v in optimizer.optimizers.items(): |
|
optimizer.optimizers[k] = accelerator.prepare(optimizer.optimizers[k]) |
|
optimizer.schedulers[k] = accelerator.prepare(optimizer.schedulers[k]) |
|
|
|
train_dataloader = accelerator.prepare(train_dataloader) |
|
|
|
for k in model: |
|
model[k] = accelerator.prepare(model[k]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
if config.get('pretrained_model', '') != '' and config.get('second_stage_load_pretrained', False): |
|
model, optimizer, start_epoch, iters = load_checkpoint(model, optimizer, config['pretrained_model'], |
|
load_only_params=config.get('load_only_params', True)) |
|
else: |
|
start_epoch = 0 |
|
iters = 0 |
|
|
|
if config.get('first_stage_path', '') != '': |
|
first_stage_path = osp.join(log_dir, config.get('first_stage_path', 'first_stage.pth')) |
|
print('Loading the first stage model at %s ...' % first_stage_path) |
|
model, optimizer, start_epoch, iters = load_checkpoint(model, optimizer, first_stage_path, |
|
load_only_params=True) |
|
else: |
|
raise ValueError('You need to specify the path to the first stage model.') |
|
|
|
best_loss = float('inf') |
|
loss_train_record = list([]) |
|
loss_test_record = list([]) |
|
|
|
loss_params = Munch(config['loss_params']) |
|
TMA_epoch = loss_params.TMA_epoch |
|
TMA_CEloss = loss_params.TMA_CEloss |
|
|
|
for epoch in range(start_epoch, epochs): |
|
running_loss = 0 |
|
start_time = time.time() |
|
criterion = nn.L1Loss() |
|
|
|
_ = [model[key].eval() for key in model] |
|
|
|
model.predictor.train() |
|
model.discriminator.train() |
|
for i, batch in enumerate(train_dataloader): |
|
|
|
batch = [b.to(device) for b in batch] |
|
texts, input_lengths, mels, mel_input_length = batch |
|
|
|
with torch.no_grad(): |
|
mask = length_to_mask(mel_input_length // (2 ** model.text_aligner.n_down)).to('cuda') |
|
mel_mask = length_to_mask(mel_input_length).to('cuda') |
|
text_mask = length_to_mask(input_lengths).to(texts.device) |
|
|
|
_, _, s2s_attn_feat = model.text_aligner(mels, mask, texts) |
|
|
|
s2s_attn_feat = s2s_attn_feat.transpose(-1, -2) |
|
s2s_attn_feat = s2s_attn_feat[..., 1:] |
|
s2s_attn_feat = s2s_attn_feat.transpose(-1, -2) |
|
|
|
with torch.no_grad(): |
|
text_mask = length_to_mask(input_lengths).to(texts.device) |
|
attn_mask = (~mask).unsqueeze(-1).expand(mask.shape[0], mask.shape[1], text_mask.shape[-1]).float().transpose(-1, -2) |
|
attn_mask = attn_mask.float() * (~text_mask).unsqueeze(-1).expand(text_mask.shape[0], text_mask.shape[1], mask.shape[-1]).float() |
|
attn_mask = (attn_mask < 1) |
|
|
|
if TMA_CEloss: |
|
s2s_attn = F.softmax(s2s_attn_feat, dim=1) |
|
else: |
|
s2s_attn = F.softmax(s2s_attn_feat, dim=-1) |
|
|
|
mask_ST = mask_from_lens(s2s_attn, input_lengths, mel_input_length // (2 ** model.text_aligner.n_down)) |
|
s2s_attn_mono = maximum_path(s2s_attn, mask_ST) |
|
|
|
|
|
m = length_to_mask(input_lengths) |
|
|
|
t_en = model.text_encoder(texts, input_lengths, m) |
|
asr = (t_en @ s2s_attn_mono) |
|
|
|
d_gt = s2s_attn_mono.sum(axis=-1).detach() |
|
|
|
|
|
|
|
ss = [] |
|
for bib in range(len(mel_input_length)): |
|
mel_length = int(mel_input_length[bib].item()) |
|
mel = mels[bib, :, :mel_input_length[bib]] |
|
s = model.style_encoder(mel.unsqueeze(0).unsqueeze(1)) |
|
ss.append(s) |
|
s = torch.stack(ss).squeeze() |
|
|
|
d, _ = model.predictor(t_en, s, |
|
input_lengths, |
|
s2s_attn_mono, |
|
m) |
|
|
|
with torch.no_grad(): |
|
M = np.random.random() |
|
ts = TimeStrech(1+ (np.random.random()-0.5)*M*0.5) |
|
|
|
mels = ts(mels.unsqueeze(1)).squeeze(1) |
|
mels = mels[:, :, :mels.size(-1) // 2 * 2] |
|
|
|
mel_input_length = torch.floor(ts.scale * mel_input_length) // 2 * 2 |
|
|
|
mask = length_to_mask(mel_input_length // (2 ** model.text_aligner.n_down)).to('cuda') |
|
mel_mask = length_to_mask(mel_input_length).to('cuda') |
|
text_mask = length_to_mask(input_lengths).to(texts.device) |
|
|
|
|
|
try: |
|
_, _, s2s_attn_feat = model.text_aligner(mels, mask, texts) |
|
except: |
|
continue |
|
|
|
s2s_attn_feat = s2s_attn_feat.transpose(-1, -2) |
|
s2s_attn_feat = s2s_attn_feat[..., 1:] |
|
s2s_attn_feat = s2s_attn_feat.transpose(-1, -2) |
|
|
|
with torch.no_grad(): |
|
text_mask = length_to_mask(input_lengths).to(texts.device) |
|
attn_mask = (~mask).unsqueeze(-1).expand(mask.shape[0], mask.shape[1], text_mask.shape[-1]).float().transpose(-1, -2) |
|
attn_mask = attn_mask.float() * (~text_mask).unsqueeze(-1).expand(text_mask.shape[0], text_mask.shape[1], mask.shape[-1]).float() |
|
attn_mask = (attn_mask < 1) |
|
|
|
if TMA_CEloss: |
|
s2s_attn = F.softmax(s2s_attn_feat, dim=1) |
|
else: |
|
s2s_attn = F.softmax(s2s_attn_feat, dim=-1) |
|
|
|
mask_ST = mask_from_lens(s2s_attn, input_lengths, mel_input_length // (2 ** model.text_aligner.n_down)) |
|
s2s_attn_mono = maximum_path(s2s_attn, mask_ST) |
|
|
|
|
|
asr = (t_en @ s2s_attn_mono) |
|
|
|
_, p = model.predictor(t_en, s, |
|
input_lengths, |
|
s2s_attn_mono, |
|
m) |
|
|
|
|
|
|
|
mel_input_length_all = accelerator.gather(mel_input_length) |
|
mel_len = int(mel_input_length_all.min().item() / 2 - 1) |
|
|
|
en = [] |
|
gt = [] |
|
p_en = [] |
|
|
|
for bib in range(len(mel_input_length)): |
|
mel_length = int(mel_input_length[bib].item() / 2) |
|
|
|
random_start = np.random.randint(0, mel_length - mel_len) |
|
en.append(asr[bib, :, random_start:random_start+mel_len]) |
|
p_en.append(p[bib, :, random_start:random_start+mel_len]) |
|
gt.append(mels[bib, :, (random_start * 2):((random_start+mel_len) * 2)]) |
|
|
|
en = torch.stack(en) |
|
p_en = torch.stack(p_en) |
|
gt = torch.stack(gt).detach() |
|
|
|
if gt.size(-1) < 80: |
|
continue |
|
|
|
with torch.no_grad(): |
|
s = model.style_encoder(gt.unsqueeze(1)) |
|
|
|
F0_real, _, F0 = model.pitch_extractor(gt.unsqueeze(1)) |
|
F0 = F0.reshape(F0.shape[0], F0.shape[1] * 2, F0.shape[2], 1).squeeze() |
|
|
|
asr_real = model.text_aligner.get_feature(gt) |
|
|
|
N_real = log_norm(gt.unsqueeze(1)).squeeze(1) |
|
|
|
mel_rec_gt = model.decoder(en, F0_real, N_real, s) |
|
|
|
F0_fake, N_fake = model.predictor.F0Ntrain(p_en, s) |
|
|
|
mel_rec = model.decoder(en, F0_fake, N_fake, s) |
|
|
|
loss_F0_rec = (F.smooth_l1_loss(F0_real, F0_fake)) / 10 |
|
loss_norm_rec = F.smooth_l1_loss(N_real, N_fake) |
|
|
|
|
|
optimizer.zero_grad() |
|
mel_rec_gt.requires_grad_() |
|
out, _ = model.discriminator(mel_rec_gt.unsqueeze(1)) |
|
loss_real = adv_loss(out, 1) |
|
loss_reg = r1_reg(out, mel_rec_gt) |
|
out, _ = model.discriminator(mel_rec.detach().unsqueeze(1)) |
|
loss_fake = adv_loss(out, 0) |
|
d_loss = loss_real + loss_fake + loss_reg |
|
accelerator.backward(d_loss) |
|
optimizer.step('discriminator') |
|
|
|
|
|
optimizer.zero_grad() |
|
loss_mel = criterion(mel_rec, mel_rec_gt) |
|
loss_dur = 0 |
|
|
|
|
|
|
|
|
|
for _s2s_pred, _text_input, _text_length in zip(d, (d_gt), input_lengths): |
|
_s2s_pred = _s2s_pred[:_text_length, :] |
|
_text_input = _text_input[:_text_length].long() |
|
_s2s_trg = torch.zeros_like(_s2s_pred) |
|
for p in range(_s2s_trg.shape[0]): |
|
_s2s_trg[p, :_text_input[p]] = 1 |
|
_dur_pred = torch.sigmoid(_s2s_pred).sum(axis=1) |
|
|
|
loss_dur += F.l1_loss(_dur_pred[1:_text_length - 1], |
|
_text_input[1:_text_length - 1]) |
|
|
|
|
|
loss_dur /= texts.size(0) |
|
|
|
with torch.no_grad(): |
|
_, f_real = model.discriminator(mel_rec_gt.unsqueeze(1)) |
|
out_rec, f_fake = model.discriminator(mel_rec.unsqueeze(1)) |
|
loss_adv = adv_loss(out_rec, 1) |
|
|
|
|
|
loss_fm = 0 |
|
for m in range(len(f_real)): |
|
for k in range(len(f_real[m])): |
|
loss_fm += torch.mean(torch.abs(f_real[m][k] - f_fake[m][k])) |
|
|
|
g_loss = loss_params.lambda_mel * loss_mel + \ |
|
loss_params.lambda_F0 * loss_F0_rec + \ |
|
loss_params.lambda_dur * loss_dur + \ |
|
loss_params.lambda_norm * loss_norm_rec + \ |
|
loss_params.lambda_adv * loss_adv + \ |
|
loss_params.lambda_fm * loss_fm |
|
|
|
running_loss += loss_mel.item() |
|
accelerator.backward(g_loss) |
|
if torch.isnan(g_loss): |
|
from IPython.core.debugger import set_trace |
|
set_trace() |
|
optimizer.step('predictor') |
|
|
|
iters = iters + 1 |
|
if (i+1)%log_interval == 0 and accelerator.is_main_process: |
|
logger.info('Epoch [%d/%d], Step [%d/%d], Loss: %.5f, Avd Loss: %.5f, Disc Loss: %.5f, Dur Loss: %.5f, Norm Loss: %.5f, F0 Loss: %.5f' |
|
%(epoch+1, epochs, i+1, len(train_list)//batch_size, running_loss / log_interval, loss_adv, d_loss, loss_dur, loss_norm_rec, loss_F0_rec)) |
|
|
|
writer.add_scalar('train/mel_loss', running_loss / log_interval, iters) |
|
writer.add_scalar('train/adv_loss', loss_adv.item(), iters) |
|
writer.add_scalar('train/d_loss', d_loss.item(), iters) |
|
writer.add_scalar('train/dur_loss', loss_dur, iters) |
|
writer.add_scalar('train/norm_loss', loss_norm_rec, iters) |
|
writer.add_scalar('train/F0_loss', loss_F0_rec, iters) |
|
|
|
running_loss = 0 |
|
print('Time elasped:', time.time()-start_time) |
|
|
|
loss_test = 0 |
|
loss_align = 0 |
|
_ = [model[key].eval() for key in model] |
|
|
|
with torch.no_grad(): |
|
iters_test = 0 |
|
for batch_idx, batch in enumerate(val_dataloader): |
|
optimizer.zero_grad() |
|
|
|
batch = [b.to(device) for b in batch] |
|
texts, input_lengths, mels, mel_input_length = batch |
|
with torch.no_grad(): |
|
mask = length_to_mask(mel_input_length // (2 ** model.text_aligner.n_down)).to('cuda') |
|
text_mask = length_to_mask(input_lengths).to(texts.device) |
|
|
|
_, _, s2s_attn_feat = model.text_aligner(mels, mask, texts) |
|
|
|
s2s_attn_feat = s2s_attn_feat.transpose(-1, -2) |
|
s2s_attn_feat = s2s_attn_feat[..., 1:] |
|
s2s_attn_feat = s2s_attn_feat.transpose(-1, -2) |
|
|
|
with torch.no_grad(): |
|
text_mask = length_to_mask(input_lengths).to(texts.device) |
|
attn_mask = (~mask).unsqueeze(-1).expand(mask.shape[0], mask.shape[1], text_mask.shape[-1]).float().transpose(-1, -2) |
|
attn_mask = attn_mask.float() * (~text_mask).unsqueeze(-1).expand(text_mask.shape[0], text_mask.shape[1], mask.shape[-1]).float() |
|
attn_mask = (attn_mask < 1) |
|
|
|
if TMA_CEloss: |
|
s2s_attn = F.softmax(s2s_attn_feat, dim=1) |
|
else: |
|
s2s_attn = F.softmax(s2s_attn_feat, dim=-1) |
|
|
|
mask_ST = mask_from_lens(s2s_attn, input_lengths, mel_input_length // (2 ** model.text_aligner.n_down)) |
|
s2s_attn_mono = maximum_path(s2s_attn, mask_ST) |
|
|
|
|
|
m = length_to_mask(input_lengths) |
|
t_en = model.text_encoder(texts, input_lengths, m) |
|
asr = (t_en @ s2s_attn_mono) |
|
|
|
d_gt = s2s_attn_mono.sum(axis=-1).detach() |
|
|
|
|
|
|
|
ss = [] |
|
for bib in range(len(mel_input_length)): |
|
mel_length = int(mel_input_length[bib].item()) |
|
mel = mels[bib, :, :mel_input_length[bib]] |
|
s = model.style_encoder(mel.unsqueeze(0).unsqueeze(1)) |
|
ss.append(s) |
|
s = torch.stack(ss).squeeze() |
|
|
|
d, p = model.predictor(t_en, s, |
|
input_lengths, |
|
s2s_attn_mono, |
|
m) |
|
|
|
mel_input_length_all = accelerator.gather(mel_input_length) |
|
mel_len = int(mel_input_length_all.min().item() / 2 - 1) |
|
|
|
en = [] |
|
gt = [] |
|
p_en = [] |
|
|
|
|
|
for bib in range(len(mel_input_length)): |
|
mel_length = int(mel_input_length[bib].item() / 2) |
|
|
|
random_start = np.random.randint(0, mel_length - mel_len) |
|
en.append(asr[bib, :, random_start:random_start+mel_len]) |
|
p_en.append(p[bib, :, random_start:random_start+mel_len]) |
|
|
|
gt.append(mels[bib, :, (random_start * 2):((random_start+mel_len) * 2)]) |
|
|
|
en = torch.stack(en) |
|
p_en = torch.stack(p_en) |
|
gt = torch.stack(gt).detach() |
|
|
|
s = model.style_encoder(gt.unsqueeze(1)) |
|
|
|
F0_fake, N_fake = model.predictor.F0Ntrain(p_en, s) |
|
|
|
loss_dur = 0 |
|
|
|
|
|
|
|
|
|
for _s2s_pred, _text_input, _text_length in zip(d, (d_gt), input_lengths): |
|
_s2s_pred = _s2s_pred[:_text_length, :] |
|
_text_input = _text_input[:_text_length].long() |
|
_s2s_trg = torch.zeros_like(_s2s_pred) |
|
for bib in range(_s2s_trg.shape[0]): |
|
_s2s_trg[bib, :_text_input[bib]] = 1 |
|
_dur_pred = torch.sigmoid(_s2s_pred).sum(axis=1) |
|
loss_dur += F.l1_loss(_dur_pred[1:_text_length - 1], |
|
_text_input[1:_text_length - 1]) |
|
|
|
loss_dur /= texts.size(0) |
|
|
|
mel_rec = model.decoder(en, F0_fake, N_fake, s) |
|
mel_rec = mel_rec[..., :gt.shape[-1]] |
|
|
|
loss_mel = criterion(mel_rec, gt) |
|
|
|
loss_test += loss_mel |
|
loss_align += loss_dur |
|
iters_test += 1 |
|
|
|
print('Epochs:', epoch + 1) |
|
print('Validation loss: %.3f, %.3f' % (loss_test / iters_test, loss_align / iters_test), '\n\n\n') |
|
|
|
writer.add_scalar('eval/mel_loss', loss_test / iters_test, epoch + 1) |
|
writer.add_scalar('eval/dur_loss', loss_align / iters_test, epoch + 1) |
|
|
|
if epoch % saving_epoch == 0: |
|
if (loss_test / iters_test) < best_loss: |
|
best_loss = loss_test / iters_test |
|
try: |
|
accelerator.print('Saving..') |
|
state = { |
|
'net': {key: model[key].state_dict() for key in model}, |
|
'optimizer': optimizer.state_dict(), |
|
'iters': iters, |
|
'val_loss': loss_test / iters_test, |
|
'epoch': epoch, |
|
} |
|
except ZeroDivisionError: |
|
accelerator.print('No iter test, Re-Saving..') |
|
state = { |
|
'net': {key: model[key].state_dict() for key in model}, |
|
'optimizer': optimizer.state_dict(), |
|
'iters': iters, |
|
'val_loss': 0.1, |
|
'epoch': epoch, |
|
} |
|
|
|
if accelerator.is_main_process: |
|
save_path = osp.join(log_dir, 'epoch_2nd_%05d.pth' % epoch) |
|
torch.save(state, save_path) |
|
|
|
if accelerator.is_main_process: |
|
print('Saving..') |
|
state = { |
|
'net': {key: model[key].state_dict() for key in model}, |
|
'optimizer': optimizer.state_dict(), |
|
'iters': iters, |
|
'val_loss': loss_test / iters_test, |
|
'epoch': epoch, |
|
} |
|
save_path = osp.join(log_dir, config.get('first_stage_path', 'first_stage.pth')) |
|
torch.save(state, save_path) |
|
|
|
if __name__=="__main__": |
|
main() |