log_dir: "Models/Anispeech_with_DIFF" | |
first_stage_path: "/home/ubuntu/StyleTTS_Accelerate_44khz/Models/Anispeech/epoch_1st_00020.pth" | |
save_freq: 1 | |
log_interval: 10 | |
device: "cuda" | |
multigpu: false | |
epochs_1st: 200 # number of epochs for first stage training | |
epochs_2nd: 100 # number of peochs for second stage training | |
batch_size: 32 | |
pretrained_model: "" | |
second_stage_load_pretrained: true # set to true if the pre-trained model is for 2nd stage | |
load_only_params: false # set to true if do not want to load epoch numbers and optimizer parameters | |
diff_epoch: 5 | |
train_data: "/home/ubuntu/StyleTTS_Accelerate_44khz/Data/ani_train_only_longs.csv" | |
val_data: "/home/ubuntu/StyleTTS_Accelerate_44khz/Data/val_list_libritts.txt" | |
F0_path: "Utils/JDC/bst.t7" | |
ASR_config: "Utils/ASR/config.yml" | |
ASR_path: "Utils/ASR/epoch_00080.pth" | |
preprocess_params: | |
sr: 24000 | |
spect_params: | |
n_fft: 2048 | |
win_length: 1200 | |
hop_length: 300 | |
model_params: | |
hidden_dim: 512 | |
n_token: 178 | |
style_dim: 128 | |
n_layer: 3 | |
dim_in: 64 | |
max_conv_dim: 512 | |
n_mels: 80 | |
dropout: 0.2 | |
diffusion: | |
embedding_mask_proba: 0.1 | |
# transformer config | |
transformer: | |
num_layers: 3 | |
num_heads: 8 | |
head_features: 64 | |
multiplier: 2 | |
# diffusion distribution config | |
dist: | |
sigma_data: 0.2 # placeholder for estimate_sigma_data set to false | |
estimate_sigma_data: true # estimate sigma_data from the current batch if set to true | |
mean: -3.0 | |
std: 1.0 | |
loss_params: | |
lambda_mel: 10. # mel reconstruction loss (1st & 2nd stage) | |
lambda_adv: 1. # adversarial loss (1st & 2nd stage) | |
lambda_reg: 1. # adversarial regularization loss (1st & 2nd stage) | |
lambda_fm: 0.1 # feature matching loss (1st & 2nd stage) | |
lambda_mono: 1. # monotonic alignment loss (1st stage, TMA) | |
lambda_s2s: 1. # sequence-to-sequence loss (1st stage, TMA) | |
TMA_epoch: 2 # TMA starting epoch (1st stage) | |
# https://github.com/yl4579/StyleTTS/issues/7 | |
TMA_CEloss: false # whether to use cross-entropy (CE) loss for TMA | |
lambda_F0: 1. # F0 reconstruction loss (2nd stage) | |
lambda_norm: 1. # norm reconstruction loss (2nd stage) | |
lambda_dur: 1. # duration loss (2nd stage) | |
lambda_ce: 20. # duration predictor probability output CE loss (2nd stage) | |
lambda_sty: 1. # style reconstruction loss (2nd stage) | |
lambda_diff: 1. # score matching loss (2nd stage) | |
optimizer_params: | |
lr: 0.0001 | |