Respair's picture
Upload folder using huggingface_hub
9d7032c verified
raw
history blame
2.44 kB
log_dir: "Models/Anispeech_with_DIFF"
first_stage_path: "/home/ubuntu/StyleTTS_Accelerate_44khz/Models/Anispeech/epoch_1st_00020.pth"
save_freq: 1
log_interval: 10
device: "cuda"
multigpu: false
epochs_1st: 200 # number of epochs for first stage training
epochs_2nd: 100 # number of peochs for second stage training
batch_size: 32
pretrained_model: ""
second_stage_load_pretrained: true # set to true if the pre-trained model is for 2nd stage
load_only_params: false # set to true if do not want to load epoch numbers and optimizer parameters
diff_epoch: 5
train_data: "/home/ubuntu/StyleTTS_Accelerate_44khz/Data/ani_train_only_longs.csv"
val_data: "/home/ubuntu/StyleTTS_Accelerate_44khz/Data/val_list_libritts.txt"
F0_path: "Utils/JDC/bst.t7"
ASR_config: "Utils/ASR/config.yml"
ASR_path: "Utils/ASR/epoch_00080.pth"
preprocess_params:
sr: 24000
spect_params:
n_fft: 2048
win_length: 1200
hop_length: 300
model_params:
hidden_dim: 512
n_token: 178
style_dim: 128
n_layer: 3
dim_in: 64
max_conv_dim: 512
n_mels: 80
dropout: 0.2
diffusion:
embedding_mask_proba: 0.1
# transformer config
transformer:
num_layers: 3
num_heads: 8
head_features: 64
multiplier: 2
# diffusion distribution config
dist:
sigma_data: 0.2 # placeholder for estimate_sigma_data set to false
estimate_sigma_data: true # estimate sigma_data from the current batch if set to true
mean: -3.0
std: 1.0
loss_params:
lambda_mel: 10. # mel reconstruction loss (1st & 2nd stage)
lambda_adv: 1. # adversarial loss (1st & 2nd stage)
lambda_reg: 1. # adversarial regularization loss (1st & 2nd stage)
lambda_fm: 0.1 # feature matching loss (1st & 2nd stage)
lambda_mono: 1. # monotonic alignment loss (1st stage, TMA)
lambda_s2s: 1. # sequence-to-sequence loss (1st stage, TMA)
TMA_epoch: 2 # TMA starting epoch (1st stage)
# https://github.com/yl4579/StyleTTS/issues/7
TMA_CEloss: false # whether to use cross-entropy (CE) loss for TMA
lambda_F0: 1. # F0 reconstruction loss (2nd stage)
lambda_norm: 1. # norm reconstruction loss (2nd stage)
lambda_dur: 1. # duration loss (2nd stage)
lambda_ce: 20. # duration predictor probability output CE loss (2nd stage)
lambda_sty: 1. # style reconstruction loss (2nd stage)
lambda_diff: 1. # score matching loss (2nd stage)
optimizer_params:
lr: 0.0001