# load packages # Use this script if the DDP scripts didn't work out for you. # DDP スクリプトが機能しなかった場合は、このスクリプトを使用します。 import random import yaml import time from munch import Munch import numpy as np import torch from torch import nn import torch.nn.functional as F import torchaudio import librosa import click import shutil import warnings warnings.simplefilter('ignore') from torch.utils.tensorboard import SummaryWriter from meldataset import build_dataloader from Utils.ASR.models import ASRCNN from Utils.JDC.model import JDCNet from Utils.PLBERT.util import load_plbert from models import * from losses import * from utils import * from Modules.slmadv import SLMAdversarialLoss from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule from optimizers import build_optimizer # simple fix for dataparallel that allows access to class attributes class MyDataParallel(torch.nn.DataParallel): def __getattr__(self, name): try: return super().__getattr__(name) except AttributeError: return getattr(self.module, name) import logging from logging import StreamHandler logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) handler = StreamHandler() handler.setLevel(logging.DEBUG) logger.addHandler(handler) @click.command() @click.option('-p', '--config_path', default='Configs/config_ft.yml', type=str) def main(config_path): config = yaml.safe_load(open(config_path)) log_dir = config['log_dir'] if not osp.exists(log_dir): os.makedirs(log_dir, exist_ok=True) shutil.copy(config_path, osp.join(log_dir, osp.basename(config_path))) writer = SummaryWriter(log_dir + "/tensorboard") # write logs file_handler = logging.FileHandler(osp.join(log_dir, 'train.log')) file_handler.setLevel(logging.DEBUG) file_handler.setFormatter(logging.Formatter('%(levelname)s:%(asctime)s: %(message)s')) logger.addHandler(file_handler) batch_size = config.get('batch_size', 10) epochs = config.get('epochs', 200) save_freq = config.get('save_freq', 2) log_interval = config.get('log_interval', 10) saving_epoch = config.get('save_freq', 2) data_params = config.get('data_params', None) sr = config['preprocess_params'].get('sr', 24000) train_path = data_params['train_data'] val_path = data_params['val_data'] root_path = data_params['root_path'] min_length = data_params['min_length'] OOD_data = data_params['OOD_data'] max_len = config.get('max_len', 200) loss_params = Munch(config['loss_params']) diff_epoch = loss_params.diff_epoch joint_epoch = loss_params.joint_epoch optimizer_params = Munch(config['optimizer_params']) train_list, val_list = get_data_path_list(train_path, val_path) device = 'cuda' train_dataloader = build_dataloader(train_list, root_path, OOD_data=OOD_data, min_length=min_length, batch_size=batch_size, num_workers=2, dataset_config={}, device=device) val_dataloader = build_dataloader(val_list, root_path, OOD_data=OOD_data, min_length=min_length, batch_size=batch_size, validation=True, num_workers=0, device=device, dataset_config={}) # load pretrained ASR model ASR_config = config.get('ASR_config', False) ASR_path = config.get('ASR_path', False) text_aligner = load_ASR_models(ASR_path, ASR_config) # load pretrained F0 model F0_path = config.get('F0_path', False) pitch_extractor = load_F0_models(F0_path) # load PL-BERT model BERT_path = config.get('PLBERT_dir', False) plbert = load_plbert(BERT_path) # build model model_params = recursive_munch(config['model_params']) multispeaker = model_params.multispeaker model = build_model(model_params, text_aligner, pitch_extractor, plbert) _ = [model[key].to(device) for key in model] # DP for key in model: if key != "mpd" and key != "msd" and key != "wd": model[key] = MyDataParallel(model[key]) start_epoch = 0 iters = 0 load_pretrained = config.get('pretrained_model', '') != '' and config.get('second_stage_load_pretrained', False) if not load_pretrained: if config.get('first_stage_path', '') != '': first_stage_path = osp.join(log_dir, config.get('first_stage_path', 'first_stage.pth')) print('Loading the first stage model at %s ...' % first_stage_path) model, _, start_epoch, iters = load_checkpoint(model, None, first_stage_path, load_only_params=True, ignore_modules=['bert', 'bert_encoder', 'predictor', 'predictor_encoder', 'msd', 'mpd', 'wd', 'diffusion']) # keep starting epoch for tensorboard log # these epochs should be counted from the start epoch diff_epoch += start_epoch joint_epoch += start_epoch epochs += start_epoch model.predictor_encoder = copy.deepcopy(model.style_encoder) else: raise ValueError('You need to specify the path to the first stage model.') gl = GeneratorLoss(model.mpd, model.msd).to(device) dl = DiscriminatorLoss(model.mpd, model.msd).to(device) wl = WavLMLoss(model_params.slm.model, model.wd, sr, model_params.slm.sr).to(device) gl = MyDataParallel(gl) dl = MyDataParallel(dl) wl = MyDataParallel(wl) sampler = DiffusionSampler( model.diffusion.diffusion, sampler=ADPM2Sampler(), sigma_schedule=KarrasSchedule(sigma_min=0.0001, sigma_max=3.0, rho=9.0), # empirical parameters clamp=False ) scheduler_params = { "max_lr": optimizer_params.lr, "pct_start": float(0), "epochs": epochs, "steps_per_epoch": len(train_dataloader), } scheduler_params_dict= {key: scheduler_params.copy() for key in model} scheduler_params_dict['bert']['max_lr'] = optimizer_params.bert_lr * 2 scheduler_params_dict['decoder']['max_lr'] = optimizer_params.ft_lr * 2 scheduler_params_dict['style_encoder']['max_lr'] = optimizer_params.ft_lr * 2 optimizer = build_optimizer({key: model[key].parameters() for key in model}, scheduler_params_dict=scheduler_params_dict, lr=optimizer_params.lr) # adjust BERT learning rate for g in optimizer.optimizers['bert'].param_groups: g['betas'] = (0.9, 0.99) g['lr'] = optimizer_params.bert_lr g['initial_lr'] = optimizer_params.bert_lr g['min_lr'] = 0 g['weight_decay'] = 0.01 # adjust acoustic module learning rate for module in ["decoder", "style_encoder"]: for g in optimizer.optimizers[module].param_groups: g['betas'] = (0.0, 0.99) g['lr'] = optimizer_params.ft_lr g['initial_lr'] = optimizer_params.ft_lr g['min_lr'] = 0 g['weight_decay'] = 1e-4 # load models if there is a model if load_pretrained: model, optimizer, start_epoch, iters = load_checkpoint(model, optimizer, config['pretrained_model'], load_only_params=config.get('load_only_params', True)) n_down = model.text_aligner.n_down best_loss = float('inf') # best test loss loss_train_record = list([]) loss_test_record = list([]) iters = 0 criterion = nn.L1Loss() # F0 loss (regression) torch.cuda.empty_cache() stft_loss = MultiResolutionSTFTLoss().to(device) print('BERT', optimizer.optimizers['bert']) print('decoder', optimizer.optimizers['decoder']) start_ds = False running_std = [] slmadv_params = Munch(config['slmadv_params']) slmadv = SLMAdversarialLoss(model, wl, sampler, slmadv_params.min_len, slmadv_params.max_len, batch_percentage=slmadv_params.batch_percentage, skip_update=slmadv_params.iter, sig=slmadv_params.sig ) for epoch in range(start_epoch, epochs): running_loss = 0 start_time = time.time() _ = [model[key].eval() for key in model] model.text_aligner.train() model.text_encoder.train() model.predictor.train() model.bert_encoder.train() model.bert.train() model.msd.train() model.mpd.train() for i, batch in enumerate(train_dataloader): waves = batch[0] batch = [b.to(device) for b in batch[1:]] texts, input_lengths, ref_texts, ref_lengths, mels, mel_input_length, ref_mels = batch with torch.no_grad(): mask = length_to_mask(mel_input_length // (2 ** n_down)).to(device) mel_mask = length_to_mask(mel_input_length).to(device) text_mask = length_to_mask(input_lengths).to(texts.device) # compute reference styles if multispeaker and epoch >= diff_epoch: ref_ss = model.style_encoder(ref_mels.unsqueeze(1)) ref_sp = model.predictor_encoder(ref_mels.unsqueeze(1)) ref = torch.cat([ref_ss, ref_sp], dim=1) try: ppgs, s2s_pred, s2s_attn = model.text_aligner(mels, mask, texts) s2s_attn = s2s_attn.transpose(-1, -2) s2s_attn = s2s_attn[..., 1:] s2s_attn = s2s_attn.transpose(-1, -2) except: continue mask_ST = mask_from_lens(s2s_attn, input_lengths, mel_input_length // (2 ** n_down)) s2s_attn_mono = maximum_path(s2s_attn, mask_ST) # encode t_en = model.text_encoder(texts, input_lengths, text_mask) # 50% of chance of using monotonic version if bool(random.getrandbits(1)): asr = (t_en @ s2s_attn) else: asr = (t_en @ s2s_attn_mono) d_gt = s2s_attn_mono.sum(axis=-1).detach() # compute the style of the entire utterance # this operation cannot be done in batch because of the avgpool layer (may need to work on masked avgpool) ss = [] gs = [] for bib in range(len(mel_input_length)): mel_length = int(mel_input_length[bib].item()) mel = mels[bib, :, :mel_input_length[bib]] s = model.predictor_encoder(mel.unsqueeze(0).unsqueeze(1)) ss.append(s) s = model.style_encoder(mel.unsqueeze(0).unsqueeze(1)) gs.append(s) s_dur = torch.stack(ss).squeeze() # global prosodic styles gs = torch.stack(gs).squeeze() # global acoustic styles s_trg = torch.cat([gs, s_dur], dim=-1).detach() # ground truth for denoiser bert_dur = model.bert(texts, attention_mask=(~text_mask).int()) d_en = model.bert_encoder(bert_dur).transpose(-1, -2) # denoiser training if epoch >= diff_epoch: num_steps = np.random.randint(3, 5) if model_params.diffusion.dist.estimate_sigma_data: model.diffusion.module.diffusion.sigma_data = s_trg.std(axis=-1).mean().item() # batch-wise std estimation running_std.append(model.diffusion.module.diffusion.sigma_data) if multispeaker: s_preds = sampler(noise = torch.randn_like(s_trg).unsqueeze(1).to(device), embedding=bert_dur, embedding_scale=1, features=ref, # reference from the same speaker as the embedding embedding_mask_proba=0.1, num_steps=num_steps).squeeze(1) loss_diff = model.diffusion(s_trg.unsqueeze(1), embedding=bert_dur, features=ref).mean() # EDM loss loss_sty = F.l1_loss(s_preds, s_trg.detach()) # style reconstruction loss else: s_preds = sampler(noise = torch.randn_like(s_trg).unsqueeze(1).to(device), embedding=bert_dur, embedding_scale=1, embedding_mask_proba=0.1, num_steps=num_steps).squeeze(1) loss_diff = model.diffusion.module.diffusion(s_trg.unsqueeze(1), embedding=bert_dur).mean() # EDM loss loss_sty = F.l1_loss(s_preds, s_trg.detach()) # style reconstruction loss else: loss_sty = 0 loss_diff = 0 s_loss = 0 d, p = model.predictor(d_en, s_dur, input_lengths, s2s_attn_mono, text_mask) mel_len_st = int(mel_input_length.min().item() / 2 - 1) mel_len = min(int(mel_input_length.min().item() / 2 - 1), max_len // 2) en = [] gt = [] p_en = [] wav = [] st = [] for bib in range(len(mel_input_length)): mel_length = int(mel_input_length[bib].item() / 2) random_start = np.random.randint(0, mel_length - mel_len) en.append(asr[bib, :, random_start:random_start+mel_len]) p_en.append(p[bib, :, random_start:random_start+mel_len]) gt.append(mels[bib, :, (random_start * 2):((random_start+mel_len) * 2)]) y = waves[bib][(random_start * 2) * 300:((random_start+mel_len) * 2) * 300] wav.append(torch.from_numpy(y).to(device)) # style reference (better to be different from the GT) random_start = np.random.randint(0, mel_length - mel_len_st) st.append(mels[bib, :, (random_start * 2):((random_start+mel_len_st) * 2)]) wav = torch.stack(wav).float().detach() en = torch.stack(en) p_en = torch.stack(p_en) gt = torch.stack(gt).detach() st = torch.stack(st).detach() if gt.size(-1) < 80: continue s = model.style_encoder(gt.unsqueeze(1)) s_dur = model.predictor_encoder(gt.unsqueeze(1)) with torch.no_grad(): F0_real, _, F0 = model.pitch_extractor(gt.unsqueeze(1)) F0 = F0.reshape(F0.shape[0], F0.shape[1] * 2, F0.shape[2], 1).squeeze() N_real = log_norm(gt.unsqueeze(1)).squeeze(1) y_rec_gt = wav.unsqueeze(1) y_rec_gt_pred = model.decoder(en, F0_real, N_real, s) wav = y_rec_gt F0_fake, N_fake = model.predictor.F0Ntrain(p_en, s_dur) y_rec = model.decoder(en, F0_fake, N_fake, s) loss_F0_rec = (F.smooth_l1_loss(F0_real, F0_fake)) / 10 loss_norm_rec = F.smooth_l1_loss(N_real, N_fake) optimizer.zero_grad() d_loss = dl(wav.detach(), y_rec.detach()).mean() d_loss.backward() optimizer.step('msd') optimizer.step('mpd') # generator loss optimizer.zero_grad() loss_mel = stft_loss(y_rec, wav) loss_gen_all = gl(wav, y_rec).mean() loss_lm = wl(wav.detach().squeeze(), y_rec.squeeze()).mean() loss_ce = 0 loss_dur = 0 for _s2s_pred, _text_input, _text_length in zip(d, (d_gt), input_lengths): _s2s_pred = _s2s_pred[:_text_length, :] _text_input = _text_input[:_text_length].long() _s2s_trg = torch.zeros_like(_s2s_pred) for p in range(_s2s_trg.shape[0]): _s2s_trg[p, :_text_input[p]] = 1 _dur_pred = torch.sigmoid(_s2s_pred).sum(axis=1) loss_dur += F.l1_loss(_dur_pred[1:_text_length-1], _text_input[1:_text_length-1]) loss_ce += F.binary_cross_entropy_with_logits(_s2s_pred.flatten(), _s2s_trg.flatten()) loss_ce /= texts.size(0) loss_dur /= texts.size(0) loss_s2s = 0 for _s2s_pred, _text_input, _text_length in zip(s2s_pred, texts, input_lengths): loss_s2s += F.cross_entropy(_s2s_pred[:_text_length], _text_input[:_text_length]) loss_s2s /= texts.size(0) loss_mono = F.l1_loss(s2s_attn, s2s_attn_mono) * 10 g_loss = loss_params.lambda_mel * loss_mel + \ loss_params.lambda_F0 * loss_F0_rec + \ loss_params.lambda_ce * loss_ce + \ loss_params.lambda_norm * loss_norm_rec + \ loss_params.lambda_dur * loss_dur + \ loss_params.lambda_gen * loss_gen_all + \ loss_params.lambda_slm * loss_lm + \ loss_params.lambda_sty * loss_sty + \ loss_params.lambda_diff * loss_diff + \ loss_params.lambda_mono * loss_mono + \ loss_params.lambda_s2s * loss_s2s running_loss += loss_mel.item() g_loss.backward() if torch.isnan(g_loss): from IPython.core.debugger import set_trace set_trace() optimizer.step('bert_encoder') optimizer.step('bert') optimizer.step('predictor') optimizer.step('predictor_encoder') optimizer.step('style_encoder') optimizer.step('decoder') optimizer.step('text_encoder') optimizer.step('text_aligner') if epoch >= diff_epoch: optimizer.step('diffusion') d_loss_slm, loss_gen_lm = 0, 0 if epoch >= joint_epoch: # randomly pick whether to use in-distribution text if np.random.rand() < 0.5: use_ind = True else: use_ind = False if use_ind: ref_lengths = input_lengths ref_texts = texts slm_out = slmadv(i, y_rec_gt, y_rec_gt_pred, waves, mel_input_length, ref_texts, ref_lengths, use_ind, s_trg.detach(), ref if multispeaker else None) if slm_out is not None: d_loss_slm, loss_gen_lm, y_pred = slm_out # SLM generator loss optimizer.zero_grad() loss_gen_lm.backward() # compute the gradient norm total_norm = {} for key in model.keys(): total_norm[key] = 0 parameters = [p for p in model[key].parameters() if p.grad is not None and p.requires_grad] for p in parameters: param_norm = p.grad.detach().data.norm(2) total_norm[key] += param_norm.item() ** 2 total_norm[key] = total_norm[key] ** 0.5 # gradient scaling if total_norm['predictor'] > slmadv_params.thresh: for key in model.keys(): for p in model[key].parameters(): if p.grad is not None: p.grad *= (1 / total_norm['predictor']) for p in model.predictor.duration_proj.parameters(): if p.grad is not None: p.grad *= slmadv_params.scale for p in model.predictor.lstm.parameters(): if p.grad is not None: p.grad *= slmadv_params.scale for p in model.diffusion.parameters(): if p.grad is not None: p.grad *= slmadv_params.scale optimizer.step('bert_encoder') optimizer.step('bert') optimizer.step('predictor') optimizer.step('diffusion') # SLM discriminator loss if d_loss_slm != 0: optimizer.zero_grad() d_loss_slm.backward(retain_graph=True) optimizer.step('wd') iters = iters + 1 if (i+1)%log_interval == 0: logger.info ('Epoch [%d/%d], Step [%d/%d], Loss: %.5f, Disc Loss: %.5f, Dur Loss: %.5f, CE Loss: %.5f, Norm Loss: %.5f, F0 Loss: %.5f, LM Loss: %.5f, Gen Loss: %.5f, Sty Loss: %.5f, Diff Loss: %.5f, DiscLM Loss: %.5f, GenLM Loss: %.5f, SLoss: %.5f, S2S Loss: %.5f, Mono Loss: %.5f' %(epoch+1, epochs, i+1, len(train_list)//batch_size, running_loss / log_interval, d_loss, loss_dur, loss_ce, loss_norm_rec, loss_F0_rec, loss_lm, loss_gen_all, loss_sty, loss_diff, d_loss_slm, loss_gen_lm, s_loss, loss_s2s, loss_mono)) writer.add_scalar('train/mel_loss', running_loss / log_interval, iters) writer.add_scalar('train/gen_loss', loss_gen_all, iters) writer.add_scalar('train/d_loss', d_loss, iters) writer.add_scalar('train/ce_loss', loss_ce, iters) writer.add_scalar('train/dur_loss', loss_dur, iters) writer.add_scalar('train/slm_loss', loss_lm, iters) writer.add_scalar('train/norm_loss', loss_norm_rec, iters) writer.add_scalar('train/F0_loss', loss_F0_rec, iters) writer.add_scalar('train/sty_loss', loss_sty, iters) writer.add_scalar('train/diff_loss', loss_diff, iters) writer.add_scalar('train/d_loss_slm', d_loss_slm, iters) writer.add_scalar('train/gen_loss_slm', loss_gen_lm, iters) running_loss = 0 print('Time elasped:', time.time()-start_time) loss_test = 0 loss_align = 0 loss_f = 0 _ = [model[key].eval() for key in model] with torch.no_grad(): iters_test = 0 for batch_idx, batch in enumerate(val_dataloader): optimizer.zero_grad() try: waves = batch[0] batch = [b.to(device) for b in batch[1:]] texts, input_lengths, ref_texts, ref_lengths, mels, mel_input_length, ref_mels = batch with torch.no_grad(): mask = length_to_mask(mel_input_length // (2 ** n_down)).to('cuda') text_mask = length_to_mask(input_lengths).to(texts.device) _, _, s2s_attn = model.text_aligner(mels, mask, texts) s2s_attn = s2s_attn.transpose(-1, -2) s2s_attn = s2s_attn[..., 1:] s2s_attn = s2s_attn.transpose(-1, -2) mask_ST = mask_from_lens(s2s_attn, input_lengths, mel_input_length // (2 ** n_down)) s2s_attn_mono = maximum_path(s2s_attn, mask_ST) # encode t_en = model.text_encoder(texts, input_lengths, text_mask) asr = (t_en @ s2s_attn_mono) d_gt = s2s_attn_mono.sum(axis=-1).detach() ss = [] gs = [] for bib in range(len(mel_input_length)): mel_length = int(mel_input_length[bib].item()) mel = mels[bib, :, :mel_input_length[bib]] s = model.predictor_encoder(mel.unsqueeze(0).unsqueeze(1)) ss.append(s) s = model.style_encoder(mel.unsqueeze(0).unsqueeze(1)) gs.append(s) s = torch.stack(ss).squeeze() gs = torch.stack(gs).squeeze() s_trg = torch.cat([s, gs], dim=-1).detach() bert_dur = model.bert(texts, attention_mask=(~text_mask).int()) d_en = model.bert_encoder(bert_dur).transpose(-1, -2) d, p = model.predictor(d_en, s, input_lengths, s2s_attn_mono, text_mask) # get clips mel_len = int(mel_input_length.min().item() / 2 - 1) en = [] gt = [] p_en = [] wav = [] for bib in range(len(mel_input_length)): mel_length = int(mel_input_length[bib].item() / 2) random_start = np.random.randint(0, mel_length - mel_len) en.append(asr[bib, :, random_start:random_start+mel_len]) p_en.append(p[bib, :, random_start:random_start+mel_len]) gt.append(mels[bib, :, (random_start * 2):((random_start+mel_len) * 2)]) y = waves[bib][(random_start * 2) * 300:((random_start+mel_len) * 2) * 300] wav.append(torch.from_numpy(y).to(device)) wav = torch.stack(wav).float().detach() en = torch.stack(en) p_en = torch.stack(p_en) gt = torch.stack(gt).detach() s = model.predictor_encoder(gt.unsqueeze(1)) F0_fake, N_fake = model.predictor.F0Ntrain(p_en, s) loss_dur = 0 for _s2s_pred, _text_input, _text_length in zip(d, (d_gt), input_lengths): _s2s_pred = _s2s_pred[:_text_length, :] _text_input = _text_input[:_text_length].long() _s2s_trg = torch.zeros_like(_s2s_pred) for bib in range(_s2s_trg.shape[0]): _s2s_trg[bib, :_text_input[bib]] = 1 _dur_pred = torch.sigmoid(_s2s_pred).sum(axis=1) loss_dur += F.l1_loss(_dur_pred[1:_text_length-1], _text_input[1:_text_length-1]) loss_dur /= texts.size(0) s = model.style_encoder(gt.unsqueeze(1)) y_rec = model.decoder(en, F0_fake, N_fake, s) loss_mel = stft_loss(y_rec.squeeze(), wav.detach()) F0_real, _, F0 = model.pitch_extractor(gt.unsqueeze(1)) loss_F0 = F.l1_loss(F0_real, F0_fake) / 10 loss_test += (loss_mel).mean() loss_align += (loss_dur).mean() loss_f += (loss_F0).mean() iters_test += 1 except: continue print('Epochs:', epoch + 1) logger.info('Validation loss: %.3f, Dur loss: %.3f, F0 loss: %.3f' % (loss_test / iters_test, loss_align / iters_test, loss_f / iters_test) + '\n\n\n') print('\n\n\n') writer.add_scalar('eval/mel_loss', loss_test / iters_test, epoch + 1) writer.add_scalar('eval/dur_loss', loss_test / iters_test, epoch + 1) writer.add_scalar('eval/F0_loss', loss_f / iters_test, epoch + 1) if (epoch + 1) % save_freq == 0 : if (loss_test / iters_test) < best_loss: best_loss = loss_test / iters_test print('Saving..') state = { 'net': {key: model[key].state_dict() for key in model}, 'optimizer': optimizer.state_dict(), 'iters': iters, 'val_loss': loss_test / iters_test, 'epoch': epoch, } save_path = osp.join(log_dir, 'epoch_2nd_%05d.pth' % epoch) torch.save(state, save_path) # if estimate sigma, save the estimated simga if model_params.diffusion.dist.estimate_sigma_data: config['model_params']['diffusion']['dist']['sigma_data'] = float(np.mean(running_std)) with open(osp.join(log_dir, osp.basename(config_path)), 'w') as outfile: yaml.dump(config, outfile, default_flow_style=True) if __name__=="__main__": main()