--- library_name: transformers license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-fine-tuned results: [] --- # whisper-fine-tuned This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 5.1515 - Wer: 1.0004 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 2.1863 | 1.6393 | 500 | 3.5257 | 0.9991 | | 1.4263 | 3.2787 | 1000 | 4.2011 | 1.0383 | | 1.1951 | 4.9180 | 1500 | 4.1093 | 0.9934 | | 0.8698 | 6.5574 | 2000 | 4.3517 | 1.7507 | | 0.7181 | 8.1967 | 2500 | 4.5794 | 1.2076 | | 0.718 | 9.8361 | 3000 | 4.6911 | 1.2960 | | 0.5776 | 11.4754 | 3500 | 4.8927 | 1.0814 | | 0.624 | 13.1148 | 4000 | 4.9520 | 1.1319 | | 0.5781 | 14.7541 | 4500 | 5.0590 | 0.9934 | | 0.5189 | 16.3934 | 5000 | 5.1515 | 1.0004 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0