lucifertrj commited on
Commit
31f4b89
·
verified ·
1 Parent(s): 1444a05

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +49 -1
README.md CHANGED
@@ -19,6 +19,10 @@ pipeline_tag: text-generation
19
 
20
  News Reporter 3B LLM is based on Phi-3 Mini-4K Instruct a dense decoder-only Transformer model designed to generate high-quality text based on user prompts. With 3.8 billion parameters, the model is fine-tuned using Supervised Fine-Tuning (SFT) to align with human preferences and question answer pairs.
21
 
 
 
 
 
22
  ### Key Features:
23
 
24
  - Parameter Count: 3.8 billion.
@@ -26,4 +30,48 @@ News Reporter 3B LLM is based on Phi-3 Mini-4K Instruct a dense decoder-only Tra
26
  - Context Length: Supports up to 4,000 tokens.
27
  - Training Data: 43.5K+ question and answer pairs curated from different News channel.
28
 
29
- ## Model Benchmarking
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
  News Reporter 3B LLM is based on Phi-3 Mini-4K Instruct a dense decoder-only Transformer model designed to generate high-quality text based on user prompts. With 3.8 billion parameters, the model is fine-tuned using Supervised Fine-Tuning (SFT) to align with human preferences and question answer pairs.
21
 
22
+ ## Base Model
23
+
24
+ We evaluated multiple off-the-shelf models, including Gemma-7B, Gemma-2B, Llama-3-8B, and Phi-3-mini-4K, and found that the Phi-3-mini-4K model performed best overall for our evaluation set. This model excels in multilingual query understanding and response generation, thanks to its 3.8 billion parameters and a 4096 context window length. Trained with over 3.3 trillion tokens, Phi-3-mini-4K stands out for its ability to be quantized to 4 bits, reducing its memory footprint to around 1.8 GB. It processes 8 to 12 tokens per second on a single T4 GPU, requiring just 3-4 GB of VRAM for inference.
25
+
26
  ### Key Features:
27
 
28
  - Parameter Count: 3.8 billion.
 
30
  - Context Length: Supports up to 4,000 tokens.
31
  - Training Data: 43.5K+ question and answer pairs curated from different News channel.
32
 
33
+ ## Inference
34
+
35
+ ```python
36
+ import torch
37
+ from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline,set_seed
38
+
39
+ model_name = "RedHenLabs/news-reporter-3b"
40
+
41
+ tokenizer = AutoTokenizer.from_pretrained(model_name,trust_remote_code=True)
42
+ model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, torch_dtype="auto", device_map="cuda")
43
+
44
+ pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
45
+
46
+ def test_inference(prompt):
47
+ prefix = "Generate a concise and accurate news summary based on the following question.\n Input:"
48
+ prompt = pipe.tokenizer.apply_chat_template([{"role": "user", "content": prefix+prompt}], tokenize=False, add_generation_prompt=True)
49
+ outputs = pipe(prompt, max_new_tokens=512, do_sample=True, num_beams=1, temperature=0.1, top_k=50, top_p=0.95,
50
+ max_time= 180)
51
+ return outputs[0]['generated_text'][len(prompt):].strip()
52
+
53
+ res = test_inference(" What is the status of the evacuations and the condition of those injured?")
54
+ print(res)
55
+ ```
56
+
57
+ ## Model Benchmark
58
+
59
+ | (0 Shot) | News-reporter-3b | Phi-3-mini-4k | Gemma-7b-it | Llama-2-7B | Mistral-7B-Instruct-v0.2 |
60
+ |----------------------|------------------|---------------|-------------|------------|--------------------------|
61
+ | MMLU | 69.49 | **69.90** | 64.3 | 45.3 | 59.02 |
62
+ | ARC_C | **56.40** | 56.14 | 53.2 | 45.9 | 55.89 |
63
+ | Winogrande | **74.19** | 73.24 | 68.03 | 69.5 | 73.72 |
64
+ | Truthfulqa | 50.43 | **66.46** | 44.18 | 57.4 | 53.00 |
65
+
66
+
67
+ ## Citation
68
+
69
+ ```
70
+ @misc {lucifertrj,
71
+ author = { {Tarun Jain} },
72
+ title = { News Reporter 3B by Red Hen Lab part of Google Summer of Code 2024},
73
+ year = 2024,
74
+ url = { https://huggingface.co/RedHenLabs/news-reporter-3b },
75
+ publisher = { Hugging Face }
76
+ }
77
+ ```