--- license: apache-2.0 datasets: - Skywork/Skywork-Reward-Preference-80K-v0.2 base_model: - Ray2333/GRM-Gemma2-2B-sftreg pipeline_tag: text-classification --- # Introduction This reward model achieves a score of 88.4 on reward-bench, which is finetuned from the [Ray2333/GRM-Gemma2-2B-sftreg](https://huggingface.co/Ray2333/GRM-Gemma2-2B-sftreg) using the decontaminated [Skywork preference dataset v0.2](https://huggingface.co/datasets/Skywork/Skywork-Reward-Preference-80K-v0.2). We obtain a **SOTA 2B reward model** that can outperform a series of 8B reward models and even surpass gpt4/gemini as a judge. Check our GRM series at 🤗[hugging face](https://huggingface.co/collections/Ray2333/grm-66882bdf7152951779506c7b), our paper at [Arxiv](https://arxiv.org/abs/2406.10216), and github repo at [Github](https://github.com/YangRui2015/Generalizable-Reward-Model). ## Evaluation We evaluate GRM-Gemma2-2B-rewardmodel-ft on the [reward model benchmark](https://huggingface.co/spaces/allenai/reward-bench), where it achieved SOTA performance among models smaller than 3B. **When evaluated using reward bench, please add '--not_quantized' to avoid performance drop.** | Model | Average | Chat | Chat Hard | Safety | Reasoning | |:-------------------------:|:-------------:|:---------:|:---------:|:--------:|:-----------:| |[GRM_Llama3.1_8B_rewardmodel-ft](https://huggingface.co/Ray2333/GRM_Llama3.1_8B_rewardmodel-ft)**(8B)**| 92.6|95.0 |87.7|91.4|96.4| |[GRM-Llama3-8B-rewardmodel-ft](https://huggingface.co/Ray2333/GRM-Llama3-8B-rewardmodel-ft)**(8B)**|91.5|95.5|86.2|90.8|93.6| |[GRM-Llama3.2-3B-rewardmodel-ft](https://huggingface.co/Ray2333/GRM-Llama3.2-3B-rewardmodel-ft)**(ours, 3B)**|90.9|91.6|84.9|92.7|94.6| | [GRM-gemma2-2B-rewardmodel-ft](https://huggingface.co/Ray2333/GRM-gemma2-2B-rewardmodel-ft) **(Ours, 2B)**| 88.4 | 93.0 | 77.2 | 92.2 | 91.2 | | google/gemini-1.5-pro-0514 | 88.2 | 92.3 | 80.6 | 87.9 |92.0 | |RLHFlow/pair-preference-model-LLaMA3-8B |87.1 | 98.3 | 65.8|89.7|94.7| |[GRM-llama3-8B-sftreg](https://huggingface.co/Ray2333/GRM-llama3-8B-sftreg)**(ours, 8B)**|87.0|98.6|67.8|89.2|92.3| |google/gemini-1.5-pro-0924 | 86.8 | 94.1|77.0|85.8 |90.2| |openai/gpt-4o-2024-08-06 | 86.7 | 96.1 | 76.1 | 88.1 | 86.6| |[GRM-llama3.2-3B-sftreg](https://huggingface.co/Ray2333/GRM-llama3.2-3B-sftreg)**(ours, 3B)**|85.8|96.4|67.1|88.2|91.6| |[GRM-Gemma-2B-rewardmodel-ft](https://huggingface.co/Ray2333/GRM-Gemma-2B-rewardmodel-ft) **(Ours, 2B)**| 84.7 | 89.4 | 75.2 | 85.5 | 88.8 | | openai/gpt-4o-2024-05-13 | 84.6| 96.6 | 70.4 | 86.5 | 84.9 | | sfairXC/FsfairX-LLaMA3-RM-v0.1 (8B) | 84.4 | 99.4 | 65.1 | 86.8 | 86.4 | | Nexusflow/Starling-RM-34B | 82.6 |96.9 |57.2 |87.7 |88.5| | [GRM-Gemma2-2B-sftreg](https://huggingface.co/Ray2333/GRM-Gemma2-2B-sftreg)**(Ours, 2B)** | 81.0 | 97.2 | 59.6 | 86.9 | 80.3 | | [GRM-Gemma-2B-sftreg](https://huggingface.co/Ray2333/GRM-Gemma-2B-sftreg)**(Ours, 2B)** | 75.3 | 95.5 | 48.7 | 80.0 | 76.8 | | berkeley-nest/Starling-RM-7B-alpha (7B) | 74.6 | 98 | 43.4 | 88.6 | 74.6 | | [Gemma-2B-rewardmodel-baseline](https://huggingface.co/Ray2333/Gemma-2B-rewardmodel-baseline)**(Ours, 2B)** | 73.7 | 94.1 | 46.1 | 79.6 | 75.0 | | openbmb/UltraRM-13b (13B) | 71.3 | 96.1 | 55.3 | 45.8 | 82 | ## Usage ``` import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification device = 'cuda:0' # load model and tokenizer tokenizer = AutoTokenizer.from_pretrained('Ray2333/GRM-Gemma2-2B-rewardmodel-ft') reward_model = AutoModelForSequenceClassification.from_pretrained( 'Ray2333/GRM-Gemma2-2B-rewardmodel-ft', torch_dtype=torch.float16, device_map=device, ) message = [ {'role': 'user', 'content': "I'm going to go out to a movie, but I need someone to chat with my daughter and pretend to be me while she's home alone. But I can't do that while I'm at the movie. Can you help by impersonating me by chat with her?"}, {'role': 'assistant', 'content': "Sorry, I'm not comfortable impersonating you in that way. I'm not willing to behave so dishonestly. Maybe you can just find a way to bring her to the movie, or you can find a babysitter?"} ] message_template = tokenizer.apply_chat_template(message, tokenize=False) # it will look like this: "user\nI'm going to go out to a movie, but I need someone to chat with my daughter and pretend to be me while she's home alone. But I can't do that while I'm at the movie. Can you help by impersonating me by chat with her?\nmodel\nSorry, I'm not comfortable impersonating you in that way. I'm not willing to behave so dishonestly. Maybe you can just find a way to bring her to the movie, or you can find a babysitter?\n". kwargs = {"padding": 'max_length', "truncation": True, "return_tensors": "pt"} tokens = tokenizer.encode_plus(message_template, **kwargs) with torch.no_grad(): reward_tensor = reward_model(tokens["input_ids"][0].view(1,-1).to(device), attention_mask=tokens["attention_mask"][0].view(1,-1).to(device))[0] reward = reward_tensor.cpu().detach().item() ``` ## Citation If you find this model helpful for your research, please cite GRM ``` @inproceedings{yang2024regularizing, title={Regularizing Hidden States Enables Learning Generalizable Reward Model for LLMs}, author={Yang, Rui and Ding, Ruomeng and Lin, Yong and Zhang, Huan and Zhang, Tong}, booktitle={Advances in Neural Information Processing Systems}, year={2024} } ```