Text Classification
Safetensors
gemma2
Ray2333 commited on
Commit
4f7d3b8
·
verified ·
1 Parent(s): 7a1a454

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +84 -3
README.md CHANGED
@@ -1,3 +1,84 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - Skywork/Skywork-Reward-Preference-80K-v0.2
5
+ base_model:
6
+ - Ray2333/GRM-Gemma2-2B-sftreg
7
+ pipeline_tag: text-classification
8
+ ---
9
+
10
+ # Introduction
11
+ This reward model achieves a score of 88.4 on reward-bench, which is finetuned from the [Ray2333/GRM-Gemma2-2B-sftreg](https://huggingface.co/Ray2333/GRM-Gemma2-2B-sftreg) using the decontaminated [Skywork preference dataset v0.2](https://huggingface.co/datasets/Skywork/Skywork-Reward-Preference-80K-v0.2).
12
+ We obtain a **SOTA 2B reward model** that can outperform a series of 8B reward models and even surpass gpt4/gemini as a judge.
13
+
14
+ Check our GRM series at 🤗[hugging face](https://huggingface.co/collections/Ray2333/grm-66882bdf7152951779506c7b) and our paper at [Arxiv](https://arxiv.org/abs/2406.10216).
15
+
16
+
17
+
18
+ ## Evaluation
19
+ We evaluate GRM-Gemma2-2B-rewardmodel-ft on the [reward model benchmark](https://huggingface.co/spaces/allenai/reward-bench), where it achieved SOTA performance among models smaller than 3B.
20
+
21
+ **When evaluated using reward bench, please add '--not_quantized' to avoid performance drop.**
22
+
23
+ | Model | Average | Chat | Chat Hard | Safety | Reasoning |
24
+ |:-------------------------:|:-------------:|:---------:|:---------:|:--------:|:-----------:|
25
+ |[Ray2333/GRM-Llama3.2-3B-rewardmodel-ft](https://huggingface.co/Ray2333/GRM-Llama3.2-3B-rewardmodel-ft)**(ours, 3B)**|90.9|91.6|84.9|92.7|94.6|
26
+ | [Ray2333/GRM-gemma2-2B-rewardmodel-ft](https://huggingface.co/Ray2333/GRM-gemma2-2B-rewardmodel-ft) **(Ours, 2B)**| 88.4 | 93.0 | 77.2 | 92.2 | 91.2 |
27
+ | google/gemini-1.5-pro-0514 | 88.2 | 92.3 | 80.6 | 87.9 |92.0 |
28
+ |RLHFlow/pair-preference-model-LLaMA3-8B |87.1 | 98.3 | 65.8|89.7|94.7|
29
+ |[Ray2333/GRM-llama3-8B-sftreg](https://huggingface.co/Ray2333/GRM-llama3-8B-sftreg)**(ours, 8B)**|87.0|98.6|67.8|89.2|92.3|
30
+ |google/gemini-1.5-pro-0924 | 86.8 | 94.1|77.0|85.8 |90.2|
31
+ |openai/gpt-4o-2024-08-06 | 86.7 | 96.1 | 76.1 | 88.1 | 86.6|
32
+ |[Ray2333/GRM-llama3.2-3B-sftreg](https://huggingface.co/Ray2333/GRM-llama3.2-3B-sftreg)**(ours, 3B)**|85.8|96.4|67.1|88.2|91.6|
33
+ |[Ray2333/GRM-Gemma-2B-rewardmodel-ft](https://huggingface.co/Ray2333/GRM-Gemma-2B-rewardmodel-ft) **(Ours, 2B)**| 84.7 | 89.4 | 75.2 | 85.5 | 88.8 |
34
+ | openai/gpt-4o-2024-05-13 | 84.6| 96.6 | 70.4 | 86.5 | 84.9 |
35
+ | sfairXC/FsfairX-LLaMA3-RM-v0.1 (8B) | 84.4 | 99.4 | 65.1 | 86.8 | 86.4 |
36
+ | Nexusflow/Starling-RM-34B | 82.6 |96.9 |57.2 |87.7 |88.5|
37
+ | [Ray2333/GRM-Gemma2-2B-sftreg](https://huggingface.co/Ray2333/GRM-Gemma2-2B-sftreg)**(Ours, 2B)** | 81.0 | 97.2 | 59.6 | 86.9 | 80.3 |
38
+ | [Ray2333/GRM-Gemma-2B-sftreg](https://huggingface.co/Ray2333/GRM-Gemma-2B-sftreg)**(Ours, 2B)** | 75.3 | 95.5 | 48.7 | 80.0 | 76.8 |
39
+ | berkeley-nest/Starling-RM-7B-alpha (7B) | 74.6 | 98 | 43.4 | 88.6 | 74.6 |
40
+ | [Ray2333/Gemma-2B-rewardmodel-baseline](https://huggingface.co/Ray2333/Gemma-2B-rewardmodel-baseline)**(Ours, 2B)** | 73.7 | 94.1 | 46.1 | 79.6 | 75.0 |
41
+ | openbmb/UltraRM-13b (13B) | 71.3 | 96.1 | 55.3 | 45.8 | 82 |
42
+
43
+
44
+
45
+
46
+ ## Usage
47
+
48
+ ```
49
+ import torch
50
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
51
+
52
+ device = 'cuda:0'
53
+ # load model and tokenizer
54
+ tokenizer = AutoTokenizer.from_pretrained('Ray2333/GRM-Gemma-2B-rewardmodel-ft')
55
+ reward_model = AutoModelForSequenceClassification.from_pretrained(
56
+ 'Ray2333/GRM-Gemma2-2B-rewardmodel-ft', torch_dtype=torch.float16,
57
+ device_map=device,
58
+ )
59
+ message = [
60
+ {'role': 'user', 'content': "I'm going to go out to a movie, but I need someone to chat with my daughter and pretend to be me while she's home alone. But I can't do that while I'm at the movie. Can you help by impersonating me by chat with her?"},
61
+ {'role': 'assistant', 'content': "Sorry, I'm not comfortable impersonating you in that way. I'm not willing to behave so dishonestly. Maybe you can just find a way to bring her to the movie, or you can find a babysitter?"}
62
+ ]
63
+ message_template = tokenizer.apply_chat_template(message, tokenize=False)
64
+ # it will look like this: "<bos><start_of_turn>user\nI'm going to go out to a movie, but I need someone to chat with my daughter and pretend to be me while she's home alone. But I can't do that while I'm at the movie. Can you help by impersonating me by chat with her?<end_of_turn>\n<start_of_turn>model\nSorry, I'm not comfortable impersonating you in that way. I'm not willing to behave so dishonestly. Maybe you can just find a way to bring her to the movie, or you can find a babysitter?<end_of_turn>\n".
65
+
66
+ kwargs = {"padding": 'max_length', "truncation": True, "return_tensors": "pt"}
67
+ tokens = tokenizer.encode_plus(message_template, **kwargs)
68
+
69
+ with torch.no_grad():
70
+ reward_tensor = reward_model(tokens["input_ids"][0].view(1,-1).to(device), attention_mask=tokens["attention_mask"][0].view(1,-1).to(device))[0]
71
+ reward = reward_tensor.cpu().detach().item()
72
+ ```
73
+
74
+
75
+ ## Citation
76
+ If you find this model helpful for your research, please cite GRM
77
+ ```
78
+ @article{yang2024regularizing,
79
+ title={Regularizing Hidden States Enables Learning Generalizable Reward Model for LLMs},
80
+ author={Yang, Rui and Ding, Ruomeng and Lin, Yong and Zhang, Huan and Zhang, Tong},
81
+ journal={arXiv preprint arXiv:2406.10216},
82
+ year={2024}
83
+ }
84
+ ```