RaushanTurganbay HF staff commited on
Commit
edb0d3b
·
1 Parent(s): deb8680

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +21 -3
README.md CHANGED
@@ -28,9 +28,27 @@ tokenizer = GPT2Tokenizer.from_pretrained("RaushanTurganbay/GPT2_instruct_tuned"
28
  model = GPT2LMHeadModel.from_pretrained("RaushanTurganbay/GPT2_instruct_tuned")
29
 
30
  # Generate responses
31
- prompt = "Your input prompt here"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
  inputs = tokenizer(prompt, return_tensors="pt")
33
- outputs = model.generate(**inputs, max_length=150, num_return_sequences=1)
34
 
35
- print(tokenizer.decode(outputs[0], skip_special_tokens=True))
36
  ```
 
28
  model = GPT2LMHeadModel.from_pretrained("RaushanTurganbay/GPT2_instruct_tuned")
29
 
30
  # Generate responses
31
+ class StoppingCriteriaSub(StoppingCriteria):
32
+ def __init__(self, stops=[], encounters=1):
33
+ super().__init__()
34
+ self.stops = [stop.to("cuda") for stop in stops]
35
+ def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
36
+ for stop in self.stops:
37
+ if torch.all((stop == input_ids[0][-len(stop):])).item():
38
+ return True
39
+ return False
40
+
41
+
42
+ def stopping_criteria(tokenizer, stop_words):
43
+ stop_words_ids = [tokenizer(stop_word, return_tensors='pt')['input_ids'].squeeze() for stop_word in stop_words]
44
+ stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])
45
+ return stopping_criteria
46
+
47
+ # Generate responses
48
+ stopping = stopping_criteria(tokenizer, ["\n\nHuman:"])
49
+ prompt = "\n\nHuman: {your_instruction}\n\nAssistant:"
50
  inputs = tokenizer(prompt, return_tensors="pt")
51
+ outputs = model.generate(**inputs, stopping_criteria=stopping, max_length=150)
52
 
53
+ print("Model Response:", tokenizer.batch_decode(outputs))
54
  ```