Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- fp8
|
4 |
+
- vllm
|
5 |
+
---
|
6 |
+
|
7 |
+
See original model card for information about how it was made. This is to enable fast inference use with Hopper level hardware in FP8. I quantized it to FP8 using neuralmagic code below on 4x L40s.
|
8 |
+
|
9 |
+
https://huggingface.co/alpindale/magnum-72b-v1
|
10 |
+
|
11 |
+
# Magnum-72b-v1-FP8
|
12 |
+
|
13 |
+
## Model Overview
|
14 |
+
* <h3 style="display: inline;">Model Architecture:</h3> Based on and identical to the Qwen2-72B-Instruct architecture
|
15 |
+
* <h3 style="display: inline;">Model Optimizations:</h3> Weights and activations quantized to FP8
|
16 |
+
* <h3 style="display: inline;">Release Date:</h3> June 25, 2024
|
17 |
+
|
18 |
+
Magnum-72B-v1 quantized to FP8 weights and activations using per-tensor quantization through the [AutoFP8 repository](https://github.com/neuralmagic/AutoFP8), ready for inference with vLLM >= 0.5.0.
|
19 |
+
Calibrated with 512 UltraChat samples to achieve 100% performance recovery on the Open LLM Benchmark evaluations.
|
20 |
+
Reduces space on disk by ~45%.
|
21 |
+
Part of the [FP8 LLMs for vLLM collection](https://huggingface.co/collections/neuralmagic/fp8-llms-for-vllm-666742ed2b78b7ac8df13127).
|
22 |
+
|
23 |
+
## Usage and Creation
|
24 |
+
Produced using [AutoFP8 with calibration samples from ultrachat](https://github.com/neuralmagic/AutoFP8/blob/147fa4d9e1a90ef8a93f96fc7d9c33056ddc017a/example_dataset.py).
|
25 |
+
|
26 |
+
```python
|
27 |
+
from datasets import load_dataset
|
28 |
+
from transformers import AutoTokenizer
|
29 |
+
|
30 |
+
from auto_fp8 import AutoFP8ForCausalLM, BaseQuantizeConfig
|
31 |
+
|
32 |
+
pretrained_model_dir = "alpindale/magnum-72b-v1"
|
33 |
+
quantized_model_dir = "Magnum-72B-FP8"
|
34 |
+
|
35 |
+
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True, model_max_length=4096)
|
36 |
+
tokenizer.pad_token = tokenizer.eos_token
|
37 |
+
|
38 |
+
ds = load_dataset("mgoin/ultrachat_2k", split="train_sft").select(range(512))
|
39 |
+
examples = [tokenizer.apply_chat_template(batch["messages"], tokenize=False) for batch in ds]
|
40 |
+
examples = tokenizer(examples, padding=True, truncation=True, return_tensors="pt").to("cuda")
|
41 |
+
|
42 |
+
quantize_config = BaseQuantizeConfig(quant_method="fp8", activation_scheme="static")
|
43 |
+
|
44 |
+
model = AutoFP8ForCausalLM.from_pretrained(
|
45 |
+
pretrained_model_dir, quantize_config=quantize_config
|
46 |
+
)
|
47 |
+
model.quantize(examples)
|
48 |
+
model.save_quantized(quantized_model_dir)
|
49 |
+
```
|